
Key-Value stores:

a practical overview

Marc Seeger
Computer Science and Media

Ultra-Large-Sites SS09
Stuttgart, Germany

September 21, 2009

Abstract

Key-Value stores provide a high performance alternative to rela-
tional database systems when it comes to storing and acessing data.
This paper provides a short overview over some of the currently avail-
able key-value stores and their interface to the Ruby programming
language.

1



Contents

1 Outline 3

2 Key Value stores and the NoSQL movement 3

3 Contestants 5
3.1 CouchDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Ruby-Interface . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Tokyo Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Ruby-Interface . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Ruby-Interface . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.2 Data model . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Installation / Ruby-Interface . . . . . . . . . . . . . . 18

4 Conclusions 20

2



1 Outline

The rest of this paper is organized as follows:
After an introduction to the general concept of key value stores, I will look at
a few different implementations. Each section about an implementation will
consist of a short overview of noteworthy features, followed by an overview
of the installation procedure and a look at the way you can access the soft-
ware using the Ruby programming language.
While there are many Key Value stores available, some of them have a lim-
ited usability to the average web-programmer. This paper will not strictly
focus on big, distributed infrastructures but rather on the simpler key-value
stores that could replace a conventional SQL Server such as MySQL in
usual web applications. With the tested software solutions, only Cassandra
(Chapter 3.4) allows for a truly distributed infrastructure.

2 Key Value stores and the NoSQL movement

SQL, the Structured Query Language was invented in the 1970s at IBM. It
is a language designed to handle data that has been structured according
to Edgar F. Codd’s relational model described in his paper, ”A Relational
Model of Data for Large Shared Data Banks” and has since then developed
to be the standard language for relational databases.
SQL allowed people to construct powerful queries that are able to analyse
and sub-sample huge amounts of specially structured data and help oper-
ation, accounting or banking departments get indicators for the success of
their newly introduced business processes or even just managing the monthly
payments to their employees.
Back in the days, huge computers (not only in processing power but also in
size) were used to work though seemingly vast amounts of data. This was
also the time when using a computer scientist’s time to optimize an SQL
query was something that actually paid off in the end.
In general, SQL managed to deal with specially structured data and allowed
highly dynamic queries according to the needs of the department in ques-
tion.
While there are still no real competitors for SQL in this specific field, the
use-case in everyday web applications is a different one.
You will not find a highly dynamic range of queries full of outer and inner
joins, unions and complex calculations over large tables. You will usually
find a very object oriented way of thinking. Especially with adoption of such
patterns as MVC, the data in the back-end is usually not being modelled
for a database, but for logical integrity which also helps people to be able
to cope with understanding huge software-infrastructures.
What is being done to put these object-oriented models into relational

3



databases is a large amount of normalization that leads to complex hier-
archies of tables and completely steers against the main idea behind object
oriented programming. Servers that adhere to the SQL standard also have
to implement a large portion of code that is of no use to simple data storage
what so ever and only inflates the memory footprint, security risks and has
performance hits as a result.
The fact that SQL allows for arbitrary dynamic queries for complex sets of
data is being rendered useless by using an SQL Database only for persistent
storage of object oriented data, which is what basically most applications
do these days.
This is where Key Value stores come into play. Key value stores allow the
application developer to store schema-less data. This data is usually con-
sisting of a string which represents the key and the actual data which is
considered to be the value in the ”key - value” relationship. The data itself
is usually some kind of primitive of the programming language (a string,
an integer, an array) or an object that is being marshalled by the program-
ming languages bindings to the key value store. This replaces the need for
fixed data model and makes the requirement for properly formatted data
less strict.
To make this more clear, here’s a short example (using ruby and the simple
but limited ”pstore” standard library) that should make that concept clear
to any programmer.

require "pstore"

store = PStore.new("data-file.pstore")

store.transaction do # begin transaction

# load some data into the store...

store[:single_object] = "Lorem ipsum dolor sit amet..."

store[:obj_heirarchy] = { "Marc Seeger" => ["ruby", "nosql"],

"Rainer Wahnsinn" => ["php", "mysql"] }

end # commit changes to data store file

In this short example, we have created a key-value store on disk called
”data file.pstore” and added two objects.
The object with the key ”:single object” is basically a simple string, ”:obj hierarchy”
on the other hand is a more complex datatype. It is a Hash which contains
arrays of strings.
Accessing those objects would be as simple as e.g. assigning the object to a
variable, exactly the same way we’d usually interact with hashes in Ruby:

my_var = store[:single_object]

Syntax for different key-value stores will obviously differ, but they all func-
tion in a conceptually similar manner.

4



They all allow storage of arbitrary data which is being indexed using a single
key to allow retrieval. The biggest difference for the ”simpler” stores is the
way you can (or cannot) authenticate or access different stores (if possible).
While the speed advantages in storing and retrieving data might be a rea-
son to consider it over common SQL Databases, another big advantage that
emerges when using key-value stores is that the resulting code tends to
look clean and simple when compared to embedded SQL strings in your
programming language. This is something that people tend to fight with
object-relational mapping frameworks such as Hibernate or Active Record.
Having an object relational mappers basically seems to emulate a key value
store by adding a lot of really complex code between an SQL database and
an object-oriented programming language.
A whole community of people come together under the ”NoSQL” tag and
discuss these advantages and also disadvantages of using alternatives to re-
lational database management systems. One of the more recent meet-ups
featured prominent talks from people working for Facebook, Stumbleupon,
Linkedin and Last.fm.
People interested in nosql-related technology can look at the videos and
slides of that meet-up can at Johan Oskarsson’s blog1 (he’s a developer at
last.fm).
It has to be noted that the ”nosql” movement not only includes the ”newly
emerging” key-value stores I’m discussing in this paper, but also does in-
clude object stores such as e.g. BerkleyDB, O2, GemStone or Statice which
all date back to the 70s and 80s and are as ”industrial strength” as it gets.
One important thing to consider is, that the nosql movement is not against
SQL in general. The main idea behind the movement is, that it not okay
to automatically assume some kind of SQL server when people talk about
data persistence. SQL is much more than just the ability to persistently
store data in a specified manner, in fact, it is so much more that it is ba-
sically an overkill in most situations. Showing alternatives to the current
SQL-dominated persistence landscape is one of the main goals to the nosql
community.

3 Contestants

While there are lots of Key Value Stores that focus an scalability, synchro-
nization over several servers and fault tolerance, discussing those individual
properties could each fill a paper on their own. I would like to give an entry
level introduction on the ”simpler” Key-Value stores that focus on simply
replacing SQL Servers (read: usually MySQL) for the usual consistency
matters. The need for distributing/sharding data because of performance
considerations is not as urgent as with larger SQL-Server instances. Key

1http://blog.oskarsson.nu/2009/06/nosql-debrief.html

5

http://blog.oskarsson.nu/2009/06/nosql-debrief.html


Value stores have remarkably high insert/read rates compared to ”usual”
SQL Servers. While some of the contestants DO support master-slave repli-
cation (e.g. redis) or are actually distributed (e.g. Cassandra), the main
focus of this paper will not be on those features but rather on the ease of
use for simple projects.
I decided to use the following contestants in accordance to their perceived
popularity in the, for the most part web-centric, Ruby community:

• CouchDB (Chapter 3.1)

• Tokyo Cabinet (Chapter 3.2)

• Redis (Chapter 3.3)

• Cassandra (Chapter 3.4)

If you have already studied larger systems, you might know the piece of
software that is basically the heart of many of the big players in web 2.0
called ”memcached”. We will NOT look at memcached because it is not
designed to be persistent, it just holds everything in memory without saving
since its main objective is to function as a caching mechanism. There is a
modifications called ”memcacheDB”, but it doesn not, in my opinion, offer
that much differences over the chosen candidates to actually justify adding
it to the paper. People looking for a mixture between redis and cassandra
might want to take a short look at the projects homepage2 though.
The key-value stores we want to take a look at can be used as the main
DB for the application as they always support persistence as part of their
design.
Before discussing each of those servers in detail, here is a short overview:

CouchDB is a key-value store implementation in Erlang that uses HTTP
to communicate with clients and Javascript to generate ”views”

Tokyo Cabinet Tokyo Cabinet (and its network interface, Tokyo Tyrant)
is a key-value store that supports 3 modes of operation: hashtable
mode, b-tree mode, and table mode.
It is used by the high-load environment of the Japanese Facebook-
equivalent Mixi
Tokyo Cabinet is written in C.

Redis An in-memory key-value store focusing on performance, implemented
in C.

Cassandra An extended key-value store originally developed by Facebook.
It was developed by some of the key engineers behind Amazon’s fa-
mous Dynamo database.

2MemcacheDB homepage: http://www.memcachedb.org/

6

http://www.memcachedb.org/


Here is a quote describing the software, directly taken from the project’s
homepage3:
”Cassandra is a highly scalable, eventually consistent, distributed,
structured key-value store. Cassandra brings together the distributed
systems technologies from Dynamo and the data model from Googles
BigTable. Like Dynamo, Cassandra is eventually consistent. Like
BigTable, Cassandra provides a ColumnFamily-based data model richer
than typical key/value systems”

3.1 CouchDB

3.1.1 About

From the projects homepage4:

Apache CouchDB is a distributed, fault-tolerant and schema-free
document-oriented database accessible via a RESTful HTTP/JSON
API. Among other features, it provides robust, incremental repli-
cation with bi-directional conflict detection and resolution, and
is queryable and indexable using a table-oriented view engine
with JavaScript acting as the default view definition language.
CouchDB is written in Erlang, but can be easily accessed from
any environment that provides means to make HTTP requests.
There are a multitude of third-party client libraries that make
this even easier for a variety of programming languages and en-
vironments.

CouchDB is coded in Erlang. The only bigger C parts are the IBM uni-
code library and the spidermonkey javascript engine (which also powers e.g.
Firefox).
CouchDB uses a simple RESTful HTTP/JSON approach to interfacing with
the outside world. Seeing as HTTP is probably one of the most supported
protocols, old infrastructure such as loadbalancers, http caches or SSL prox-
ies can still be used in connection with CouchDB.
This allows companies to harvest existing knowledge to easily secure and
speed up their HTTP-based CouchDB infrastructure without having to hire
an external database specialist.
Another interesting feature of CouchDB is the fact that developers can use
”views” to query the software for data. Views are basically map and re-
duce functions that are implemented in Javascript and sent to CouchDB.
Querying these views is simply a matter of making the appropriate HTTP

3http://incubator.apache.org/cassandra/
4http://couchdb.apache.org

7

http://incubator.apache.org/cassandra/
http://couchdb.apache.org


GET request. CouchDB keeps these views incrementally up to date by sim-
ply running new inserts through the map and reduce functions. There are
some limitations imposed when creating these views to keep the incremental
updates working. Here’s a short excerpt from the CouchDB wiki5:

The restriction on map functions is that they must be refer-
entially transparent. That is, given the same input document,
they will always emit the same key/value pairs. This allows
CouchDB views to be updated incrementally, only reindexing
the documents that have changed since the last index update.

This way of querying for data allows web developers to use their HTTP
and Javascript skills to interact with CouchDB after just a few minutes of
research.

3.1.2 Installation

The installation process is pretty much the usual (taken from the CouchDB
readme file6):

svn co http://svn.apache.org/repos/asf/couchdb/trunk couchdb

cd couchdb

./bootstrap && ./configure

make

sudo make install

Some of the dependencies are e.g. Erlang/OTP, GCC, make, OpenSSL
and Spidermonkey (the Javascript engine powering Mozilla Firefox).
There are also a lot of prebuilt packages for your favourite Linux package
manager available.
According to the CouchDB documentation, it is also possible to compile and
run CouchDB on windows using cygwin and the Microsoft C compiler.

3.1.3 Ruby-Interface

There are a lot of different ways of interacting with CouchDB from within
Ruby. Seeing as CouchDB supports a simple REST protocol, the ”getting
started with Ruby” part of the couchDB wiki 7 uses simple HTTP calls and
JSON parsing to interact with CouchDB.
While this might work, it probably isn’t the most elegant and productive
solution, this is why there are a few libraries that encapsulate the REST logic

5CouchDB wiki - views:http://wiki.apache.org/couchdb/Introduction_to_
CouchDB_views

6CouchDB Readme: http://svn.apache.org/viewvc/couchdb/trunk/README?view=

markup
7http://wiki.apache.org/couchdb/Getting_started_with_Ruby

8

http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views
http://svn.apache.org/viewvc/couchdb/trunk/README?view=markup
http://svn.apache.org/viewvc/couchdb/trunk/README?view=markup
http://wiki.apache.org/couchdb/Getting_started_with_Ruby


in something more Ruby-like. Here’s a quote from the previously mentioned
CouchDB wiki:

For a simple Ruby wrapper around CouchDB’s RESTful API,
see CouchRest, which keeps you fairly close the metal, as well as
having a few helpful wrappers, like a builtin view pager and com-
panion libraries like CouchModel (for document id and lifecycle
management) and Slipcover (for parallel query execution).

We will now take a short look at CouchRest, which is available as a gem on
github (gem install jchris-couchrest -s http://gems.github.com).
This is the description as given in CouchRest’s Readme file:

CouchRest is based on CouchDB’s couch.js test library, which I
find to be concise, clear, and well designed. CouchRest lightly
wraps CouchDB’s HTTP API, managing JSON serialization,
and remembering the URI-paths to CouchDB’s API endpoints
so you do not have to.

CouchRest is designed to make a simple base for application and
framework-specific object oriented APIs. CouchRest is Object-
Mapper agnostic, the parsed JSON it returns from CouchDB
shows up as subclasses of Ruby’s Hash. Naked JSON, just as it
was mean to be.

As the way CouchREST interacts with CouchDB is nothing out of the
ordinary and as I am generally a fan of code examples, I decided to simply
use the ”quick start” example taken from the CouchRest Readme file to
show the basic interaction with the library:

# with !, it creates the database if it doesn’t already exist

@db = CouchRest.database!("http://127.0.0.1:5984/couchrest-test")

response = @db.save_doc({:key => ’value’, ’another key’ => ’another value’})

doc = @db.get(response[’id’])

puts doc.inspect

This is how you save more than one entry to the store:

@db.bulk_save([

{"wild" => "and random"},

{"mild" => "yet local"},

{"another" => ["set","of","keys"]}

])

Another way of using CouchDB that might be interesting for legacy ap-
plications is the fact, that Datamapper (the ORM used e.g. with the merb
webframework) and Active Record (the ORM that is used with the Rails

9



webframework) can in theory both be used in connection with CouchDB by
using matching adapter libraries. This way, legacy Web Applications can
simply be migrated from e.g. MySQL to a CouchDB environment.
Thanks to the way CouchDB can be accessed by simple HTTP GET calls,
it would also be possible to query the Database directly with the end-users
webbrowser. The returned JSON documents can simply be parsed and prop-
erly inserted into the webpage using Javascript on the End-User side. An ex-
ample of this kind of ”stand alone application” can be seen over at ”SoFa”8,
the Standalone CouchDB Blog (also used by the O’Reilly CouchDB book)

3.2 Tokyo Cabinet

3.2.1 About

The Tokio* Universe is separated in 3 main software projects that provide
different functionalities:

Tokyo Cabinet itself is only the library dealing with all of the data struc-
tures (B+tree’s, hash tables, ...) used to organize content. It is sup-
posed to provide high performance and scalability while still remaining
simple in its concepts. This also allows projects to use Tokyo Cabinet
only as a fast way to persistently store their data without any network
overhead by simply linking to the Tokyo Cabinet library.

Tokyo Tyrant is the networking interface that provides outside access to
the data stored in Tokyo Cabinet. It features a simple client-server
model and allows multiple applications to access the same Tokyo Cab-
inet Database. Besides its own effective binary protocol, it also sup-
ports the memcached protocol and HTTP. It’s also responsible for
asynchronous replication with several different Tokyo Cabinets. A re-
ally important feature is the ability to use Lua to script arbitrary fun-
cionality into Tokyo Tyrant. A good overview about the Lua scripting
can either be found in the official documentation9 or the short overview
by Ilya Grigorik10. This basically allows us to add any atomic opera-
tion we’d like to have to the key-value store.

Tokyo Dystopia is an optimized high-speed full-text search engine for
Tokyo Cabinets and is e.g. used to search for friends in the Japanese
Facebook equivalent mixi.jp

8http://github.com/jchris/sofa
9Official Tokyo Tyrant documentation: http://tokyocabinet.sourceforge.net/

tyrantdoc/#luaext
10Ilya Grigorik’s blog post about tokyo cabinet: http://www.igvita.com/2009/07/13/

extending-tokyo-cabinet-db-with-lua/

10

http://github.com/jchris/sofa
http://tokyocabinet.sourceforge.net/tyrantdoc/#luaext
http://tokyocabinet.sourceforge.net/tyrantdoc/#luaext
http://www.igvita.com/2009/07/13/extending-tokyo-cabinet-db-with-lua/
http://www.igvita.com/2009/07/13/extending-tokyo-cabinet-db-with-lua/


3.2.2 Installation

Tokyo Cabinet and Tokyo Tyrant both follow the usual 3 step process of
./configure, make, make install.
If you want to use the Lua scripting capabilities of tokyo tyrant, you would
have to use ./configure –enable-lua.

3.2.3 Ruby-Interface

The official homepage11 distributes the ruby bindings as a tarball which can
be compiled and installed.
There are however, a number of gems available via the ruby packaging sys-
tem. There are also adapters to object relational mappers like Datamapper
(”DM”) that would allow storage of information in toyko cabinet without
changing more than 2 or 3 lines the sourcecode responsible for storing the
data.
Here are the results of a simple query over the default gem repositories that
come with rubygems:

# gem search -r tokyo

*** REMOTE GEMS ***

actsasflinn-ruby-tokyotyrant (0.2.0)

careo-tokyocabinet (1.21)

careo-tokyotyrant (1.3.0.1)

jackowayed-rufus-tokyo (0.1.13.2)

joshbuddy-tokyo_cache_cow (0.0.3)

makoto-dm-tokyo-cabinet-adapter (0.0.2)

nofxx-tokyo_store (0.3.0)

ntalbott-rufus-tokyo (0.1.14)

rubysouth-tokyo_model (0.0.4)

rufus-tokyo (1.0.0)

scottburton11-tokyomapper (0.1.1)

shanna-dm-tokyo-adapter (0.3.2)

shanna-dm-tokyo-cabinet-adapter (0.1.6)

3.3 Redis

3.3.1 About

This is taken directly from the readme file that is shipped with the redis
sourcecode and describes the program in a way the creators see it. I’ve

11Tokyo Cabinet Homepage: http://1978th.net/tokyocabinet/

11

http://1978th.net/tokyocabinet/


taken the liberty of highlighting the important things:

Redis is a database. To be more specific redis is a very simple
database implementing a dictionary where keys are associated
with values. For example I can set the key ”surname 1992” to
the string ”Smith”. The interesting thing about Redis is that
values associated to keys are not limited to simple strings,
they can also be lists and sets, with a number of server-side
atomic operations associated to this data types.
Redis takes the whole dataset in memory, but the dataset is
persistent since from time to time Redis writes a dump of the
dataset on disk asynchronously. The dump is loaded every time
the server is restarted.
Redis can be configured to save the dataset after a given
number of seconds elapsed and changes to the data set.
For example you can tell Redis to save after 1000 changes and at
least 60 seconds since the same save. You can specify a number
of this combinations.
Because data is written asynchronously, If a system crash oc-
curs the last few queries can get lost (that is acceptable in
many applications). Redis supports master-slave replication
from the early days in order to make this a non issue if your
application is of the kind where even few lost records are not
acceptable.

While this might seem to look pretty fine, it has to be taken with cau-
tion. Redis makes heavy use of RAM and only flushes out its data to disk
asynchronously. This makes it less than ideal for important data as there is
a high probability of data-loss in case of a sever crash (power loss / faulty
PSU / bluescreen ...). On the other hand, this makes Redis one of the fastest
key-value stores in the field and very usable for the common ”not that im-
portant” data that one can find in most current web applications, especially
in social networks etc. In the rare case of a crash, it will not be that impor-
tant to save the last status update somebody posted or a single tagging of a
single person in a single picture. It is how ever of vital importance to deliver
a pleasant usage speed to the user without database backends slowing down
due to unneeded transactional integrity etc.
With redis, you can expect over 100.000 operations (insert/read/increment/...)
per second on a normal linux box with 50 concurrent clients.
There are some misconceptions on the level of sharding support that redis
provides. When talking about sharding and redis, nearly all of the work
gets done by the client library. Basically, a cryptographic hash over the key
is calculated and a server is chosen according to the results of that, it is a
client side setup though.

12



One of the impressive features is the programming languages support. At
the time of writing the official Redis google code page lists the existence of
bindings for:

• Ruby

• Python

• PHP

• Erlang

• Tcl

• Perl

• Lua

• Java (a JDBC and a JCA adapter are available)

A quote from the redis page:

All the client libraries are shipped in the same tar.gz together
with Redis but if you want the latest versions check the main
repositories. An exception is for both the Java clients that are
not still included in the tar.gz since they reached stability re-
cently.

3.3.2 Installation

The installation of redis consists only of untaring the source file and using
make to build the server / benchmark suite.

3.3.3 Ruby-Interface

To use redis from within ruby, there is a gem (the ruby term for ”library”)
called redis (no surprises here...) which allows easy ruby-like access to the
key-value store.
This short example is taken from ”Redis and Ruby”, a blog post on pro-
grammersparadox.com12. It will connect to a redis server running on the
default redis port (6379) on localhost and set a key:

require "rubygems"

require "redis"

r = Redis.new

r.delete("first_key") #clear it out, if it happens to be set

puts "Set the key ’first_key’ to ’hello world’"

12http://www.programmersparadox.com/2009/06/02/redis-and-ruby/

13

http://www.programmersparadox.com/2009/06/02/redis-and-ruby/


r["first_key"] = "hello world"

puts "The value of ’first_key’ is:"

puts r["first_key"]

One of the nice things is, that redis is able to work with a plaintext
protocol using telnet:

$ telnet localhost 6379

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’\^ ]’.

SET foo 3

bar

+OK

GET foo

$3

bar

What all of this means:
Command Meaning

SET foo 3 set the key ”foo” to the next 3 characters
bar these are the 3 bytes followed by a newline character
+OK the server tells us that it will insert the data (asynchronously)
GET foo get the value for the key ”foo”
$3 the value will be the next 3 bytes
bar our result

Some other interesting server-side atomic operations are pretty much
self explanatory. Having these operations allows redis to do concurrent ac-
cess without having to deal with a lot of the most common locking problems:

SET key value set a key to a string value

GET key return the string value of the key

GETSET key value set a key to a string returning the old value of the key

MGET key1 key2 ... keyN multi-get, return the strings values of the
keys

SETNX key value set a key to a string value if the key does not exist

INCR key increment the integer value of key

INCRBY key integer increment the integer value of key by integer

DECR key decrement the integer value of key

14



DECRBY key integer decrement the integer value of key by integer

EXISTS key test if a key exists

DEL key delete a key

TYPE key return the type of the value stored at key

As you can see, it’s pretty much the basic things that people who have
already dealt with a associative arrays will be familiar with. The only in-
teresting thing is the possibility to increment and decrement a key using an
atomic operation. You can see some of the other operations supported by
redis over at the projects wiki13.

3.4 Cassandra

3.4.1 About

Cassandra is a hybrid non-relational database comparable to Google’s BigTable
(with the difference that is uses a DHT instead of a central server). Cas-
sandra was initially created by Facebook and later transferred to the open-
source community. It currently is an Apache Incubator project. Facebook
uses Cassandra as email search system where, as of last summer, they had
25TB and over 100m mailboxes.
Here is a quote describing the software, directly taken from the project’s
homepage14:

”Cassandra is a highly scalable, eventually consistent, distributed,
structured key-value store. Cassandra brings together the dis-
tributed systems technologies from Dynamo and the data model
from Googles BigTable. Like Dynamo, Cassandra is eventually
consistent. Like BigTable, Cassandra provides a ColumnFamily-
based data model richer than typical key/value systems”.

Avinash Lakshman of Facebook summarized it on his first slide of his nosql
presentation on Cassandra15 in one sentence: Cassandra is a structured
storage system over a P2P network.
Cassandra’s design goals are not the same as for most of the other key value
stores since it does not primarily focus on simplicity and an simple data
model, but according to Mr Lakshman’s presentation rather these:

• High availability

13Redis Wiki - Command Reference: http://code.google.com/p/redis/wiki/

CommandReference
14http://incubator.apache.org/cassandra/
15Avinash Lakshman’s slides: http://www.slideshare.net/Eweaver/

cassandra-presentation-at-nosql or http://static.last.fm/johan/

nosql-20090611/cassandra_nosql.pdf and video: http://vimeo.com/5185526

15

http://code.google.com/p/redis/wiki/CommandReference
http://code.google.com/p/redis/wiki/CommandReference
http://incubator.apache.org/cassandra/
http://www.slideshare.net/Eweaver/cassandra-presentation-at-nosql
http://www.slideshare.net/Eweaver/cassandra-presentation-at-nosql
http://static.last.fm/johan/nosql-20090611/cassandra_nosql.pdf
http://static.last.fm/johan/nosql-20090611/cassandra_nosql.pdf
http://vimeo.com/5185526


• Eventual consistency (trade-off strong consistency in favour of high
availability)

• Incremental scalability

• Optimistic Replication (Knobs to tune trade-offs between consistency,durability
and latency)

• Low total cost of ownership

• Minimal administration

While a lot of interesting technology plays part in the realization of these
goals, explaining things like the gossip protocol (used for cluster member-
ship) or the read/write properties would be enough for a paper on its own.
If you’re interested in these, I recommend you to look at the previously
mentioned talk by Avinash Lakshman and the accompanying slides.
As you can see, Cassandra is pretty different when you compare it to the
other contestants in this paper. The first thing that differs from the other
applications is, that it is implemented in Java. Another huge difference is
the fact, that it was designed to be distributed using an ”eventually con-
sistent” approach as its data model, something that is also used by Ama-
zon’s cloud infrastructure. The details about this can be looked up on
the weblog of Werner Vogel. He is Amazon’s CTO and runs the weblog
http://www.allthingsdistributed.com where he discusses the topic in
his articles ”Eventually Consistent”16 and ”Eventually Consistent - Revis-
ited”17. It can be summarized as a way of building large distributed systems
that approaches trade-offs between consistency and availability. It also leads
to the situation that for Cassandra, speed is not only about the amount of
inserts per second, but also about the way more capacity can be added to
the system and the connected performance-costs.
The motivation behind Cassandra were basically two problems (taken from
Jonathan Ellis’s OSCON 09 talk18):

• Scaling reads to a relational database is hard

• Scaling writes to a relational database is virtually impossible

Since I did not go into detail about more of the inner workings of Cassandra,
I think looking back at Evan Weavers blog post ”Up and running with

16Werner Vogel - Eventually Consistent: http://www.allthingsdistributed.com/

2007/12/eventually_consistent.html
17Werner Vogel - Eventually Consistent Revisited: http://www.

allthingsdistributed.com/2008/12/eventually_consistent.html
18Jonathan Ellis’s OSCON 09 talk: http://www.slideshare.net/jbellis/

cassandra-open-source-bigtable-dynamo

16

http://www.allthingsdistributed.com
http://www.allthingsdistributed.com/2007/12/eventually_consistent.html
http://www.allthingsdistributed.com/2007/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.slideshare.net/jbellis/cassandra-open-source-bigtable-dynamo
http://www.slideshare.net/jbellis/cassandra-open-source-bigtable-dynamo


Cassandra”19, I should at least mention the things he titled ”features that
help put Cassandra above the competition” and relate in one way or another
to these two central problems (directly quoted from his Evan Weavers blog
post):

Flexible schema with Cassandra, like a document store, you
do not have to decide what fields you need in your records
ahead of time. You can add and remove arbitrary fields on
the fly. This is an incredible productivity boost, especially
in large deployments.

True scalability Cassandra scales horizontally in the purest
sense. To add more capacity to a cluster, turn on another
machine. You do not have restart any processes, change
your application queries, or manually relocate any data.

Multi-data center awareness you can adjust your node lay-
out to ensure that if one data center burns in a fire, an
al

Range queries unlike most key/value stores, you can query for
ordered ranges of keys.

List data structures super columns add a 5th dimension to
the hybrid model, turning columns into lists. This is very
handy for things like per-user indexes.

Distributed writes you can read and write any data to any-
where in the cluster at any time. There is never any single
point of failure.

3.4.2 Data model

Since Cassandra is more than just ”another Key-Value store”, it is neces-
sary to explain the data-structures that Cassandra uses to represent data.
Cassandra uses those building blocks to form something like a 4 (or 5) di-
mensional hash (aka: associative array). It basically means that values can
be a collection of other key+value pairs:

• a keyspace

• a column family

• a key

• an (optional) super column

• a column

19Evan Weaver - Up and running with Cassandra: http://blog.evanweaver.com/

articles/2009/07/06/up-and-running-with-cassandra/

17

http://blog.evanweaver.com/articles/2009/07/06/up-and-running-with-cassandra/
http://blog.evanweaver.com/articles/2009/07/06/up-and-running-with-cassandra/


The Keyspace is the highest hierarchy of data, and there’s typically one key
space per application (defined in the storage-conf.xml file before startup).
The Column family is the next layer below the keyspace. Data in Cassan-
dra can be stored in columns rather than the usual rows. For the advantages
over row-oriented RDBMS, I’d suggest the matching Wikipedia article20.
Column families are addressed by a specific unique Key and allow for often
queried columns to be stored together. Each column family is stored as a
separate file on disk. This allows for a certain ”data structure design” and
has also to be done before the start of the application in the storage-conf.xml
file. This means that when you select a column family in cassandra, you
will receive a group of key+value pairs just like in a multi dimensional hash
The Key is identical to other key-value stores. It is automatically indexed
and allows for fast data access. It is defined on the fly and does not have to
be pre-set in a configuration file. You can also query over a ranges of keys
in a column family.
The Super columns are basically only groupings of regular columns. They
allow you to organize related, sorted column data under a specific unique
name. As with keyspaces and column families, they have to be set up in the
storage-conf.xml file before start of the application
The column is basically where Cassandra stores the raw data

This is the point where I’d like to quote Kirk Heines from the Engine Yard
team. In his post on the Engine Yard blog titled ”Cassandra and Ruby: A
love affair?”21 he uses a pretty nice description of the Cassandra data model:

As you can see, using Cassandra is more complicated than us-
ing a simple key-value store, even one like Tokyo Cabinet which
builds a table model on a row based key-value system. However,
just like the first time you tried to learn recursion, once your
perspective shifts so that you can grok it, Cassandras structure
naturally lends itself to a whole class of otherwise tricky, high
labour queries.

3.4.3 Installation / Ruby-Interface

Seeing as we want to check the integration within the ruby programming lan-
guage, we can simply install the Cassandra server as part of the Cassandra
ruby-gem:

gem install cassandra

That way, we will install the server itself (requires a Java Runtime Environ-
ment) and the matching ruby gem.

20http://en.wikipedia.org/wiki/Column-oriented_DBMS
21http://www.engineyard.com/blog/2009/cassandra-and-ruby-a-love-affair/

18

http://en.wikipedia.org/wiki/Column-oriented_DBMS
http://www.engineyard.com/blog/2009/cassandra-and-ruby-a-love-affair/


After the installation process, you should be able to use Cassandra by simply
requiring the matching gem in ruby:

require ’rubygems’

require ’cassandra’

The gem utilizes the main way that is usually used to interact with
Cassandra: its Thrift interface.
A short quote from the Cassandra wiki22:

In short Thrift allows you easily setup service clients and servers
in various programming languages. It generates code from a
Thrift file describing the service.

Seeing as Cassandra is very complex compared to the other key value stores
and posting pieces of sourcecode would probably not do any good, I’d like
to give some more links to excellent blog posts explaining the concept a bit
further:

• Even Weavers post about Cassandra: http://blog.evanweaver.com/
articles/2009/07/06/up-and-running-with-cassandra/

• The Engine Yard blog entry by Kirk Heines: http://www.engineyard.
com/blog/2009/cassandra-and-ruby-a-love-affair/

• A video directly from the Facbook Engineering Team: http://www.

new.facebook.com/video/video.php?v=540974400803

• The Cassandra Wiki: http://wiki.apache.org/cassandra/

22Cassandra wiki - thrift: http://wiki.apache.org/cassandra/ThriftInterface

19

http://blog.evanweaver.com/articles/2009/07/06/up-and-running-with-cassandra/
http://blog.evanweaver.com/articles/2009/07/06/up-and-running-with-cassandra/
http://www.engineyard.com/blog/2009/cassandra-and-ruby-a-love-affair/
http://www.engineyard.com/blog/2009/cassandra-and-ruby-a-love-affair/
http://www.new.facebook.com/video/video.php?v=540974400803
http://www.new.facebook.com/video/video.php?v=540974400803
http://wiki.apache.org/cassandra/
http://wiki.apache.org/cassandra/ThriftInterface


4 Conclusions

The nosql community basically wants to point out that persistence does not
necessarily mean SQL. I personally think that key-value stores are a really
good approach of bringing this argument across.
As usual in computer science, there are no ”silver bullets” when it comes to
solving a problem and most solutions will end with a trade-off.
With key-value stores, you’ll end up losing the ability to run SQL-like ad-
hoc queries. You will however be able to eliminate the pain of having to
create complex SQL statements.
While object-relational mappers such as Java’s Hibernate or Ruby’s Active
Record do a pretty decent job of hiding SQL from the developer, you’ll still
have to deal with the SQL database logic in some form or another (e.g.
setting up those tables, thinking about the database layout and modelling
your application after it).
Having a simple key-value interface to your persistent data is something
that any programmer can learn dealing with within a few minutes as most
programming languages already offer similar data-structures (usually called
hashes or dictionaries).
Seeing as the key-value store technologies are pretty young and have to com-
pete against, in computer terms ”ancient”, SQL database competitors, I’d
say they’re doing a good job in delivering a possibility to create a simply
accessible way of storing and retrieving data. Another advantage key-values
stores might have compared to SQL databases is their simplicity. The con-
cepts behind their storage mechanisms are usually pretty easy to under-
stand and do not require complex SQL optimization techniques that are
pretty close to the technology used in building compilers for programming
languages.
While there certainly are probably as many arguments speaking for key-
value stores as there are against them, the introduction of some new con-
cepts that seek to solve the problems SQL is facing is considered to be a
good thing.
Concerning the contestants, it is hard to compare them as they cater to a
different audience. I myself will probably take a close look at Redis when
it comes to easy interaction with ruby and ease of use for my own pri-
vate projects. It is difficult to say when the requirements start outgrowing
”simple” software such as Redis and the need for a distributed architecture
starts appearing. Seeing as there are so many more alternatives that I sim-
ply did not have the time to discuss in this short overview (e.g. MongoDB,
Hybertable, HBase, ThruDB, MemcacheDB, Project Voldemort, Scalaris,
Dynomite, Ringo, Kai, Groonga, Senna, Lux IO, Tx, repcached, Cagra,
kumofs, ROMA, Flare, ...) and there are even Key-Value Store meetings

20



being held in Japan 23, the future for key value stores seems to look pretty
promising and is certainly something that software architects ought to keep
an eye on.

23http://blog.plathome.com/2009/02/first-key-value-storage-meeting-held.

html

21

http://blog.plathome.com/2009/02/first-key-value-storage-meeting-held.html
http://blog.plathome.com/2009/02/first-key-value-storage-meeting-held.html

	Outline
	Key Value stores and the NoSQL movement
	Contestants
	CouchDB
	About
	Installation
	Ruby-Interface

	Tokyo Cabinet
	About
	Installation
	Ruby-Interface

	Redis
	About
	Installation
	Ruby-Interface

	Cassandra
	About
	Data model
	Installation / Ruby-Interface


	Conclusions

