
Event-Driven I/O
A hands-on introduction

Marc Seeger
HdM Stuttgart

August 8, 2010

Abstract

This paper gives a short introduction to the topic of asynchronous,
event-driven I/O, explains the underlying "reactor" pattern and introduces
the usage of lightweight threads to help with readability of event-driven
code.

1

Contents
1 Introduction 2

2 General scalability problems 2
2.1 Computations . 2
2.2 I/O . 3

3 Threads: Concurrency the old fashioned way 4

4 Reactor and Proactor 5
4.1 Working with the reactor . 7

5 Fighting complexity - Lightweight threads as syntactic sugar 8

6 Asynchronous I/O Frameworks 9

7 When to use it 10

8 Conclusion 11

1

1 Introduction
When it comes to application development, there are a few things that separate
regular single-user desktop applications from server applications. The one
main thing however is, that server applications tend to have many concurrent
users while desktop applications can usually be designed for a single user at
any given time.
One of the most important differences is the way that the applications handles
data input and output. Desktop Applications usually receive data over the
network or load files from disk using "synchronous" or "blocking" I/O. This
is usually the easy way and is fine for a single user. As soon as an application
has to interact with several users or large amounts of input/output, using an
non-blocking I/O becomes the only way of keeping the application responsive
and allowing it to scale.

2 General scalability problems
When trying to create a single service that will scale for thousands of incoming
requests, there are two main things that influence the performance of your
application: Computation and I/O.

2.1 Computations

Computations are the part of your application that actually use most of the
available CPU. They are the functional components that transform data from
one form into another. This can be compressing images, translating text into
other languages, sorting numbers according to size.
The main problem is that your server’s CPU has only a limited amount of
operations per second. Your algorithm needs a certain number of cycles for
every bit of input. Once you max out this ratio, your server is at peak capacity
and every added request will have to wait for the other ones to finish.
The simplest solution to this problem is adding more and faster hardware to
the system in question. You can buy faster CPUs to be able to process more
cycles per second. The problem is that the cost and the amount of additional
scalability you can gather is very limited by the manufacturing process and
clockspeeds of current CPUs. There is usually only little difference between
the clock speed of a regular CPU and a high-end CPU. There is however
a difference in the amount of available cores between the regular (2) and
the high end (8) Processors. This leads us to the next way to solve the
computational problem. A solution that is a little bit more sophisticated

2

is the partitioning of data by the algorithm. This allows each part of the
split-up computation to be processed by a different core of the CPU. A simple
assumption would be, that an 8 core CPU will now solve a given problem
4 times as fast as a dual-core CPU. This is however a bit oversimplified. If
you’re interested in this topic, I can recommend Kai Jäger’s Bachelor Thesis
"Finding parallelism - How to survive in a multi-core world" (2008) [2].
Taking the parallelization to the next step means that we distribute the
problem not only between several cores of a CPU, but between several
networked computers and thus have a simple way of scaling our system
by adding additional machines to the network. A generalized approach to
this problem has been introduced by Jeffrey Dean and Sanjay Ghemawat
(both employed by Google) in a paper called "MapReduce: Simplified Data
Processing on Large Clusters". If the scalability of the application is CPU
bound, transforming the applications different tasks into MapReduce elements
might be the best way to go. An open-source set of frameworks that (among
other things) implements MapReduce and helps with coordination and network
interaction between the processing nodes is called Apache Hadoop. It is widely
used and worth a look if your problem is the processing of vast amounts of
data on a large amount of machines/cores.

2.2 I/O

The other problem that keeps applications from scaling is Input and Output
of data to attached devices. These devices can be network cards, harddiscs
or anything else that isn’t directly connected to the reasonably fast RAM or
the CPU.
Using MapReduce helps to process a large amounts of data in a short amount
of time and thus solves the computation problem, but it doesn’t help with
large numbers of small operations.
The single pieces of data are usually pretty easy to process and distributing
the single piece of data among more than one node, sometimes even among
more than one CPU core, isn’t usually worth the overhead that comes with it.
Most of the time between the start of the request and the result is actually
being spent waiting for data to be copied in and out of buffers and checking
if the response has arrived back yet. A simple, single-threaded application
would completely lock down while it waits for the harddisc to read a file, the
network card to collect the whole request packet, the database to answer a
query or a user to push a button. Even multi-threaded applications suffer
from problems when it comes to I/O. Every time an application is waiting for
an I/O request using a thread, it doesn’t block the rest of the application. It
does however add another piece of memory to your applications footprint and

3

depending on the implementation, might cause a lot of unnecessary switches
between threads that add a lot of overhead to the whole process.
This is why it is important to look at the way a single server process can
handle incoming data without locking down completely.

3 Threads: Concurrency the old fashioned way
To understand what concurrency using threads does, one has to understand
the process an application has to go through, to offer its services over the
network.
An application has to attach itself to a certain TCP/UDP port. This way,
the operating system will pass all incoming data that is addressed to that
port to the application listening on it. To create a simple Service, one doesn’t
have to do much.
As a little example, here is a little server that does echo back everything that
is being sent to it:

require ’socket’
server = TCPServer.new(2803)
while client = server.accept

input = client.readline
client.write "You said: #{input}"
client.close

end

This application will run to the server.accept call which is "blocking". This
means that the application will stop until somebody actually opens up a
connection to the specified port (2803 in this case). This application does
a pretty good job as long as there is only one user at a time. As soon as 2
users want to connect to the server at the same time, one of them will have
to wait for the server to message back to the first user.
The problem in the simple solution is, that everything that happens between
"server.accept" and "end" will keep our server from servicing a second
connection. This is where Threads come in.
Since a thread usually returns immediately and does its work somewhere in
the background, one can simply but everything between "server.accept" and
"end" into a thread, spawn it off and immediately start working on the next
connection that came in.
The modifications to our application are minimal:

4

require ’socket’
server = TCPServer.new(2803)
loop do

Thread.new(server.accept){ |client|
input = client.readline
client.write "You said: #{input}"
client.close

}
end

The only thing one has to pay attention to is, that the application has to be
"thread-safe" now. This means that whatever data your application changes
has to be secured by some kind of locking. Otherwise, two threads that
run in parallel would be able to produce inconsistent data in the backend
or end up in a race-condition. In our example, we don’t change any data
besides the output that gets echoed back to the user. All of the "state" of the
thread is embedded in the thread itself. This is comparable to the main ideas
behind functional programming and allows us to run these threads without
any locking backend data.
This approach isn’t without problems. For each request, a new thread has
to be spawned up, kept in memory and managed by the operating system.
This leads to a situation in which you have a 1:1 ratio between threads and
users and are limited by the ability of your operating system to balance these
threads and the RAM it takes to keep them in memory. While this allows a
server that only does lightweight operations in the threads (e.g. an HTTP
server) to scale for a while, at a few thousand concurrent connections, the
sheer management of the threads becomes a problem and the performance
drops.

4 Reactor and Proactor
There are two design patterns that try to solve the problem of having a
1:1 ratio between threads and users. Reactor and proactor are both I/O
multiplexers. They form a central instance and allow a programmer to register
event-handlers for specific I/O events. They employ an event demultiplexer
that calls the registered handlers whenever the event occurs. This means
that the programmer doesn’t have to keep all of his threads in memory at
the same time. The application logic for dealing with the I/O responses is
executed when the response is actually there and not beforehand. This keeps
the amount of switching between threads and blocking for results close to

5

zero.
The difference between reactor and proactor are the events that are being
monitored.
In the (synchronous) reactor pattern, the programmer registers callbacks
on "ready to read/write" events. Whenever one of these events happens,
the callback is being invoked and the application logic reads from or writes
to the available file descriptor. It has to be noted that file descriptors in
Unix can either be an actual file on the file system or a representation of a
network-socket.
In the (asynchronous) proactor pattern, the programmer starts an asynchronous
write/read operation by executing the operation-system’s asynchronous read/write
call and passing it a user-defined buffer. Additionally, a callback on a
"write/read complete" event is set. While the event demultiplexer waits
for changes, the operating system launches a parallel kernel thread that does
the actual write/read operation and copies the data from/to the user-defined
buffer. Once the operation is complete, the "complete"-event gets fired
and the invoked callback can continue writing/reading additional data with
another systemcall. In conclusion: The main difference between reactor and
proactor is the way they do the actual write/read. While the reactor is
only being signalled when the socket is ready to write/read and then does
the reading/writing itself in a synchronous manor, the proactor will use an
asynchronous I/O call to the operating system and only supply the buffers to
read from/write to.
A more detailed comparison between the two can be found in "Comparing Two
High-Performance I/O Design Patterns" by Alexander Libman and Vladimir
Gilbourd [1]

6

Figure 1: event-loop

4.1 Working with the reactor

When working with the reactor pattern, there are a few things that one has
to pay attention to.
The most important one is: Don’t stop the reactor! Most frameworks that
provide a generic implementation of the reactor pattern are single-threaded.
This makes perfect sense as the thread overhead is exactly what we wanted
to stay away from. This also means that the reactor loop will be executing
your callbacks and resume once they finished. Making your callback code as
lightweight as possible is a best practice when working with this pattern.
This means mainly that these things should be avoided:

• loops that iterate over large collections of objects

• computation intensive things

• calling synchronous I/O methods (printing to stdout might also be part
of this depending on its implementation)

• sleep/pause statements

If there really is a need for these operations, they should be done within an
extra thread.

7

5 Fighting complexity - Lightweight threads as
syntactic sugar

While the reactor pattern offers a great solution to I/O problems when trying
to scale, it is definitely not a "drop-in" solution. Using the pattern requires
evented code to be registered as callbacks.
This code is in almost all cases more complex (and bigger) than its ’regular’
counterpart. Especially things like nested callbacks require a lot of concentration
and are lacking readability.
While this certainly is a problem, some programming languages are able to
help by adding a lightweight alternative to threads to the mix which are
usually known as "Coroutines".
These lightweight threads are e.g. "Coroutines" in Lua, "Fibers" in Ruby,
"tasklets" in stackless Python or in general: lightweight constructs that are
able to "yield" and "resume" at a given time.
An overview of programming languages supporting this construct can be
found on the "Coroutine" page on Wikipedia1.
A good example of this can be found in Ilya Grigorik’s wonderful post blogpost
on "Untangling evented code with ruby fibers"[3]. He shows how wrapping
our callback functions in Ruby Fibers can help bring some readability back
to our code and still keep it asynchonous at heart. By wrapping them, we
can define them as a "regular" function outside of our reactor-loop and still
call them from within the loop without the risk of accidentally blocking the
reactor. Since Fibers, Ruby’s lightweight concurrency-elements, are basically
user-level Threads without preemption. They have to be yielded and resumed
by hand. This allows us to do the following workflow:

1. set up asynchronous call

2. add a callback that will resume the Fiber once the call it is done

3. immediately yield the Fiber

To give a better example, here is a generic method that would allow us
to call it from within the reactor with minimal overhead, thus keeping the
reactor loop small. The difference to a "regular" function call is, that this
piece of code will almost immediately return and NOT block the reactor.

1http://en.wikipedia.org/wiki/Coroutine

8

http://en.wikipedia.org/wiki/Coroutine

def do_something(parameter)
get the ID of our current Fiber
f = Fiber.current
set up an asyncronous call
my_async_call = Library.do_something()

register callback to resume fiber
once the async call is done
result = my_async_call.callback { f.resume() }

give control back to the main Process
Fiber.yield

This is where we’ll return to after after the fiber
has been resumed by the callback. Our "result"
variable should be set and we can return it
return result

end

To process the return value of this function, we can’t just access it in the
reactor loop, because we never know when the Fiber got called and actually
returns something.
This can be solved by just having a simple check like "if my_result != nil" in
the reactor loop. This way, we can basically wait for the method to return
something without blocking the reactor and therefore still allowing other
operations to happen while we wait.
Ilya Grigorik has automated this behaviour within his "em-synchrony" library
for the Eventmachine framework.

6 Asynchronous I/O Frameworks
There are numerous frameworks for programming languages that help programmers
to abstract over the complexity of underlying OS functionality and keep the
code focused on business logic.
This list is by no means complete, but it mentions some well known Frameworks
for mainstream programming languages. I would strongly advice to look into
these Frameworks before trying to implement an independent solution. Almost
all of these Frameworks offer generic support for TCP/UDP connections that
allow to implement any given protocol on top of an asynchronous base:

• Eventmachine: A Ruby Framework for Ruby (and JRuby). It provides

9

clients for HTTP, Memcached, SMTP, Socks and numerous other
protocols. It supports epoll (Linux), kqueue (BSD/OS X) and /dev/poll
(Solaris)

• Twisted: A Python Framework. Basis for lots of Projects implementing
HTTP, NNTP, IRC, FTP and others.

• Node.js: An evented I/O Framework for serverside Javascript. Node.js
is using Google’s V8 Javascript Engine.

• Apache Java, MINA: Allows programmers to create their own asynchronous
servers. Shipping with SSL support.

• Netty: Java, Supposedly faster than MINA. It is the underlying basis
of JXTA.

7 When to use it
While asynchronous I/O is a great tool for deployments that are I/O intensive,
it sometimes isn’t worth the additional complexity in code. Just doing a simple
test with HTTP libraries that offer easy access to evented I/O operations
shows that the total time actually waiting for a thread to start, execute and
terminate itself again is really close to what the asynchronous libraries do
with, in this case, epoll. Just as a small proof of concept, I used a benchmark
script to run requests to a mix of large sites (google, yahoo, ...) and a site that
responded slowly (simple web-application that just uses a sleep() command
before answering).
The Ruby script used 3 different approaches:

• em-http: A HTTP library for Eventmachine. Eventmachine is an
asynchronous I/O framework using the reactor pattern. The reactor is
written in C to get arround the threading constraints imposed by the
Ruby VM

• typhoeus: A library that has bindings to libcurl and is able to use
libcurl’s "multi’ interface which internally relies on epoll for evented
I/O

• threaded net::http: Ruby’s default HTTP library. Since There is no
way to request multiple URLs at once, we just launch a new thread for
each request.

10

After running each script 20 times, these are the averaged results:

em-http 2.66 s
typhoeus 2.92 s
net::http 2.65 s

We can see that, in this case, the three approaches don’t differ from each
other by more than the margin of error in this quick experiment. For most
"simple" operations with only 50-100 connections, the overhead created by
the reactor is comparable to the overhead that regular threads create in this
situation.

8 Conclusion
Asynchronous I/O is a powerful tool to help applications that have to handle
large amounts of parallel I/O operations scale. While it is also possible to
use it for generic applications with lesser requirements, it usually results in
overly complex code without a lot of gained performance for the specific task.
While there are frameworks and techniques that make the necessary code
look cleaner, it might be best to have at least some experience with either
functional programming or event-driven systems to be able to maintain a
codebase that uses evented I/O.

References
[1] "Comparing Two High-Performance I/O Design Patterns"

Alexander Libman and Vladimir Gilbourd
2005
http://www.artima.com/articles/io_design_patterns.html

[2] Finding parallelism - How to survive in a multi-core world
Kai Jäger
2008
http://kaijaeger.com/publications/finding-parallelism-how-to-survive-in-a-multi-core-world.
pdf

[3] Untangling Evented Code with Ruby Fibers
Ilya Grigorik
2010
http://www.igvita.com/2010/03/22/untangling-evented-code-with-ruby-fibers/

11

http://www.artima.com/articles/io_design_patterns.html
http://kaijaeger.com/publications/finding-parallelism-how-to-survive-in-a-multi-core-world.pdf
http://kaijaeger.com/publications/finding-parallelism-how-to-survive-in-a-multi-core-world.pdf
http://www.igvita.com/2010/03/22/untangling-evented-code-with-ruby-fibers/

	Introduction
	General scalability problems
	Computations
	I/O

	Threads: Concurrency the old fashioned way
	Reactor and Proactor
	Working with the reactor

	Fighting complexity - Lightweight threads as syntactic sugar
	Asynchronous I/O Frameworks
	When to use it
	Conclusion

