
Building blocks of a scalable web

crawler

Marc Seeger

Computer Science and Media

Stuttgart Media University

September 15, 2010

A Thesis Submitted in Fulfilment of the Requirements for a Degree of
Master of Science in Computer Science and Media

Primary thesis advisor: Prof. Walter Kriha
Secondary thesis advisor: Dr. Dries Buytaert

I

I

Abstract

The purpose of this thesis was the investigation and implementation of a

good architecture for collecting, analysing and managing website data on

a scale of millions of domains. The final project is able to automatically

collect data about websites and analyse the content management system

they are using.

To be able to do this efficiently, different possible storage back-ends were

examined and a system was implemented that is able to gather and store

data at a fast pace while still keeping it searchable.

This thesis is a collection of the lessons learned while working on the

project combined with the necessary knowledge that went into architectural

decisions. It presents an overview of the different infrastructure possibilities

and general approaches and as well as explaining the choices that have

been made for the implemented system.

II

Acknowledgements

I would like to thank Acquia and Dries Buytaert for allowing me to

experience life in the USA while working on a great project. I would

also like to thank Chris Brookins for showing me what agile project

management is all about.

Working at Acquia combined a great infrastructure and atmosphere with

a pool of knowledgeable people. Both these things helped me immensely

when trying to find and evaluate a matching architecture to this project.

Finally, I would like to thank Professor Kriha who helped with the bureaucratic

process and fueled my interest in scalable architectures.

III

Statement of originality

I hereby certify that I am the sole author of this thesis and that no part of

this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe

upon anyone’s copyright nor violate any proprietary rights and that any

ideas, techniques, quotations, or any other material from the work of

other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices.

Marc Seeger , September 2010

Contents

Contents i

List of Figures iv

1 Introduction to the Project 1
1.1 Acquia . 1
1.2 Requirements . 1
1.3 Existing codebase . 2

2 Architectural decisions and limitations 5
2.1 Estimated back-end load 5
2.2 Ruby . 7

2.2.1 The choice for Ruby 7
2.2.2 Language Features 8
2.2.3 C Extensions . 8
2.2.4 VMs . 10

2.3 I/O model (async vs threading) 15
2.4 Amazon Elastic Compute Cloud 17

2.4.1 Instance Types . 17
2.4.2 Elastic Block Store 19
2.4.3 Performance . 20

3 Back-end and Search 23
3.1 Datastores . 23

3.1.1 Categorization . 23
3.1.2 Data store scalability 27

3.2 Datastructures . 28
3.2.1 Hash-based . 29
3.2.2 R-tree-based . 31
3.2.3 Merkle-tree-based 32
3.2.4 Trie-based . 34

i

ii CONTENTS

3.2.5 Bitmap-based . 36
3.3 Generic Problems . 38

3.3.1 HTTP persistent connections 38
3.3.2 Locking . 39
3.3.3 Append-only storage and compacting 40

3.4 Search possibilities . 41
3.4.1 Classification . 41
3.4.2 Indexation . 43
3.4.3 Map/Reduce . 44
3.4.4 Search and the dynamo model 45

3.5 Evaluation . 47
3.5.1 MongoDB . 47
3.5.2 CouchDB . 52
3.5.3 MySQL and PostgreSQL 57
3.5.4 Tokyo Cabinet . 59
3.5.5 Riak . 62
3.5.6 Cassandra . 66
3.5.7 Miscellaneous . 69

3.6 External search . 72
3.6.1 Sphinx . 72
3.6.2 Solr . 75
3.6.3 Elasticsearch . 77

3.7 Work Queues . 80
3.7.1 Redis . 80
3.7.2 Conclusion for the project 82
3.7.3 Beanstalkd . 83
3.7.4 Conclusion for the project 84

4 Crawler 85
4.1 System architecture . 85

4.1.1 Components . 85
4.1.2 Data schema . 88

4.2 Problems . 91
4.2.1 HTTP redirects and standards 91
4.2.2 wildcard subdomains and spam 92
4.2.3 www cname records 93
4.2.4 top level domain detection 93
4.2.5 Balancing parallelism 94
4.2.6 File descriptors . 95

4.3 Link collection . 96
4.3.1 RegExp vs HTML Parsing 96

CONTENTS iii

4.3.2 Adaptive crawl depth 97
4.3.3 Twitter . 98
4.3.4 Seed sites . 99
4.3.5 DMOZ and Wikipedia 100
4.3.6 Zone files . 100
4.3.7 Recrawling . 101

4.4 Distribution . 101

5 Profiling-Methods 103
5.1 lsof . 103
5.2 dtrace and strace . 104
5.3 curl . 105
5.4 mtop . 106
5.5 JRuby based profiling . 106

6 Fingerprinting 109
6.1 CMS detection . 109

6.1.1 The Generator meta tag 110
6.1.2 Included files . 110
6.1.3 Javascript variables 111
6.1.4 Comments . 111
6.1.5 Special paths . 111
6.1.6 Images . 112
6.1.7 HTTP headers . 112
6.1.8 Cookies . 113
6.1.9 Problems . 113

6.2 Web servers . 114
6.3 Drupal specific data . 115

6.3.1 Modules . 115
6.3.2 Versions . 115

6.4 Hosting Provider . 117
6.5 Geolocation . 118
6.6 Industry . 118

7 Conclusion and Outlook 121

Bibliography 123

List of Figures

3.1 B+-Tree . 29

3.2 Merkle-Tree . 33

3.3 Trie datastructure . 35

3.4 Range query in a Trie . 36

3.5 Bitmap-Index . 37

3.6 Reverse Index . 43

3.7 Redis parallel access . 82

4.1 Architecture overview . 88

iv

Chapter 1

Introduction to the Project

1.1 Acquia

The project discussed in this thesis was created for Acquia Inc. Acquia

is a startup company based near Boston, Massachusetts. They provide

services around the content management system Drupal ranging from

hosting to consulting. The original idea for this project can be found in

a blog post by Dries Buytaert titled the "Drupal site crawler project"1.

Dries Buytaert is the original creator of the content management system

Drupal as well as the CTO and Co-founder of Acquia.

1.2 Requirements

Acquia would benefit from knowing the current distribution of the Drupal

content management system. As an open source project, tracking the

number of Drupal installations can’t be done by looking at licensing

numbers. Instead, an actual crawling of web sites needs to be done

to accurately count Drupal’s real world usage. The initial idea for the

project was the creation of a web crawler that would analyse websites

for certain properties. Most importantly, the crawler should be able to

detect if a website is using a content management system. Especially for

1http://buytaert.net/drupal-site-crawler-project

1

http://buytaert.net/drupal-site-crawler-project

2 CHAPTER 1. INTRODUCTION TO THE PROJECT

websites running on the Drupal CMS, the application should be able to

detect details like version numbers, modules that are in use, and other

specifics. Over the course of the project, the possibility of searching

the collected data for certain combinations of features, e.g. "all Drupal

sites that run on the IIS webserver and use a ’.edu’ toplevel domain",

was added to the requirements. A specific focus was set on getting the

crawler infrastructure scalable enough to collect details about hundreds

of millions of domains while still keeping the the data searchable. The

initial version of the crawler was designed by Dries Buytaert himself. He

describes his experience in designing the initial crawler like this:

Thanks to my engineering background and my work on Drupal,

scalability issues weren’t new to me, but writing a crawler

that processes information from billions of pages on the web,

is a whole different ball park. At various different stages of

the project and index sizes, some of the crawler’s essential

algorithms and data structures got seriously bogged down.

I made a lot of trade-offs between scalability, performance

and resource usage. In addition to the scalability issues, you

also have to learn to deal with massive sites, dynamic pages,

wild-card domain names, rate limiting and politeness, cycles

in the page/site graph, discovery of new sites, etc.

During the course of this project, I have encountered similar trade-offs

and problems. This thesis is a collection of the lessons I learned while

working on the project combined with the necessary knowledge that

went into architectural decisions. The thesis should be able to give an

overview of possibilities and the choices I have made. This way, it should

be possible to use these evaluations of building blocks in other projects.

1.3 Existing codebase

When starting the project, there was already a small amount of code

available. It was an initial version of the crawler that had been created

1.3. EXISTING CODEBASE 3

by an intern over the course of a few weeks. It was based on the Hadoop

framework. Hadoop is a Java-based framework to create and manage

Map-Reduce jobs. The framework consists of several architectural components

such as a distributed file system (HDFS), a central locking service (Zookeeper),

a database (HBase) and a job distribution service (Jobtracker). Using this

infrastructure, developers are able to split their tasks into several map

and reduce phases and distribute these jobs over a number of servers in

a transparent way.

While the Map-Reduce implementation that Hadoop provides is a good

option for analysing large amounts of data, it added a large overhead

to a web crawler infrastructure. Most of the first productive week of the

project was spent trying to set up the complete Hadoop infrastructure

and getting all of the components to work together. The wrapping of

data collection phases into map and reduce phases added an extra

layer of complexity on top of the actual application logic which seemed

unnecessary. After discussing these issues with other engineers working

at Acquia, I came to the conclusion that taking a fresh start with a worker

queue based approach was a viable alternative to the current system

design.

Chapter 2

Architectural decisions and

limitations

2.1 Estimated back-end load

The first step in designing the system architecture is to accurately predict

the production load on the back-end systems. Knowing these numbers

will heavily influence the selection of caching layers and data stores that

provide the foundation for the project. Let’s assume our initial use-case

is the simple crawling of a single website. Our crawler would go through

a process involving these steps:

1. Get the domain URL from a queue

2. Download the front page (path: "/") and robots.txt file

3. Parse all links to other domains

4. Check if the discovered links to external domains have already been

analysed

5. If they haven’t, put them on a queue.If they have, update an incoming

link counter

6. Save the collected information about the site to the database.

5

6 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

7. Optionally: Save the sites HTML and HTTP headers to the database

Looking at I/O operations, this means that for every link to a domain we

encounter, we have got to:

1. Check if this domain is already in the data store

2. Insert the link into the queue OR increment a incoming link counter

That means at least two operations for every discovered external link,

given that our back-end has atomic increments of integer values. As

an average load, this means that the back-end systems would have to

withstand:

ops = dps ∗ (2 ∗ elpd) + is

ops = back-end i/o operations per second

dps = number of processed domains per second

elpd = external links per domain

is = amount of operations needed for storing the collected information.

depending on the back-end, this might only be 1 write operation (e.g. a

single SQL INSERT)

Let us see what this means if we put in conservative values:

dps: The initial target for the crawler are 10 domains per second (about

864.000 domains per day).

elpd: Information about this number can be found in several other

papers. For our calculation, we assume an average of 7.5 external

links per web page. 1

1 Broder et al.[2] estimated the average degree of external links per page at about 7.
Ola Ågren talks in his paper "Assessment of WWW-Based Ranking Systems for Smaller
Web Sites"[4] about "8.42 outgoing hyperlinks per HTML page." with a sample size
of 7312 pages A group of Brazilian researchers set the number at 6.9 links per page
with a sample size of about 6 Million pages and documented the data in the paper
"Link-Based Similarity Measures for the Classification of Web Documents"[5]

2.2. RUBY 7

is: In our case, we assume that our back-end data is completely denormalized

and that we can write the fingerprint information to the data store

in one single write operation.

With these numbers, we end up with approximately: 10 ∗ (2 ∗ 7.5) + 1 +

2 ∗ (0.005) ≈ 151 operations per second on our back-end system just for

crawling the front page alone. Additional operations will be necessary for

making the data searchable, backups and other tasks. Even without those

additional tasks, our back-end would have to complete an operation in

under 7 milliseconds if we want to be able to process 10 domains per

second.

With our current estimations, our back-end would end up having to

deal with a minimum of 16 back-end operations for every domain we

analyse. Additional features such as monitoring CMS changes when

recrawling a domain or crawling more than just the front page would

drive up the load on the system.

2.2 Ruby

2.2.1 The choice for Ruby

While the already existing source code was Java based, I decided to

implement the new crawler in the programming language Ruby. Because

of the size of the project and only me working on it, my main goal was to

keep the code simple and rely on library support wherever possible. Ruby

has strong roots in Perl and seemed to be a good fit for the analytical part

of the process. Fingerprinting content management systems and dealing

with HTML is greatly simplified by the support of regular expressions on

a language level. and the availability of well documented and designed

HTML parsers such as Nokogiri2 and Hpricot 3. A downside of Ruby is the

set of problems that occur when using threads as a means of parallelizing
2http://nokogiri.org/
3http://wiki.github.com/hpricot/hpricot/

http://nokogiri.org/
http://wiki.github.com/hpricot/hpricot/

8 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

processes. The differences between the different available Ruby VMs in

terms of threading support will be discussed in the VM subsection (2.2.4)

of this chapter.

Another downside that people usually see when talking about Ruby

is the low performance in terms of execution speed. Since our main

performance intensive operation is the parsing of the incoming HTML,

this problem is solved by Ruby’s usage of libraries with c-extensions (see:

2.2.3).

2.2.2 Language Features

Ruby is a multi-paradigm programming language. It allows:

object orientation : every data type is an object. This also includes

classes and types that many other languages implement as primitives

(e.g. booleans, integers or null/nil)

procedural programming : when defining functions or variables outside

of classes, it makes them part of the root, ’self’ Object

functional programming : Ruby supports anonymous functions, closures,

and continuations. All statements have values and all functions

return the last evaluation implicitly

Besides these paradigms, Ruby is also a dynamic language in that it

supports introspection, reflection as well as meta programming. Ruby

uses a dynamic type system (so called "duck typing"). In terms of

object orientation, Ruby supports inheritance and singleton methods.

Although Ruby does not support multiple inheritance it allows the import

of functionality using modules. These imports are called "mixins".

2.2.3 C Extensions

A good way of differentiating between the leading Ruby VMs is looking at

the way they support C extensions. C extensions are a way for ruby-libraries

2.2. RUBY 9

to speed up computation extensive operations(e.g. XML parsing). By

implementing these operations in C, library creators allow developers

to interact with Ruby and still harvest the performance of raw C code.

This performance advantage was especially important in the early days

of Ruby. While Ruby’s performance has increased, the usage of C based

extensions is still beneficial. This holds especially true when it comes to

gaining the functionality of many of the stable and well tested C-libraries.

Wrapping these libraries into a Ruby layer is especially helpful when it

comes to the large C-based libraries such as "libxml" (used in the Ruby

XML/HTML parser "Nokogiri") or ImageMagick, for which RMagick

provides a Ruby interface.

The downside of C extensions from a language point of view is, that they

offer direct pointer access. This complicates the implementation of e.g.

better garbage collection and in general, holds back VM development.

It has to be noted that not all of the Ruby VMs support the use of C

extensions. The level of support will be discussed in the respective VM’s

chapter. There are two different kinds of C extensions. The "regular" C

extensions pose a problem for alternate implementations like JRuby,

because of the complexity involved when exposing internals of the

Ruby implementation or the usage of expensive (de)serialization. These

extensions connect to Ruby’s native API as exposed through ruby.h and

libruby.

With the foreign function interface "FFI", programmers do not have

to write a lot of C code and can stay in Ruby for most of the work. Charles

Nutter, the project lead for Ruby, describes FFI in one of his blog posts4

as follows:

FFI stands for Foreign Function Interface. FFI has been implemented

in various libraries; one of them, libffi, actually serves as the

core of JNA, allowing Java code to load and call arbitrary C

4http://blog.headius.com/2008/10/ffi-for-ruby-now-available.html

http://blog.headius.com/2008/10/ffi-for-ruby-now-available.html

10 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

libraries. libffi allows code to load a library by name, retrieve

a pointer to a function within that library, and invoke it, all

without static bindings, header files, or any compile phase.

2.2.4 VMs

One of the interesting things about Ruby is the number of Virtual Machines

that are able to execute Ruby source code. From a feature point of

view, the VMs differ in the way they implement threads (green threads

vs. native threads), their general performance, the garbage collection

algorithms they use, and weather or not the VM uses a global interpreter

lock to synchronize threads. Some of them also employ different techniques

such as JIT compilers to gain execution speed. To look at different

performance numbers, The "great Ruby Shootout"5 offers a lot of comparisons

between the current Ruby VMs. The series of articles mainly focuses

on performance in micro-benchmarks, but also pays attention to RAM

consumption.

2.2.4.1 Global interpreter lock and threading

Especially when trying to implement a crawler that has a good domain

throughput, it is important to look at the way that the execution environment

handles threads. When a VM implements a global interpreter lock, it

forces threads to acquire a lock before executing code. This lock is shared

between all of the threads inside a VM. This means that only one thread

can run at a time. While this seems to defeat the purpose of threads,

it still enables a program to gain performance compared to a single

threaded alternative. The way that the VM switches between threads has

a large impact on the possible gains. Sasada Koichi, creator of YARV (the

VM that is powering Ruby 1.9), explains on the ruby mailing list 6 how

developers of C extensions can unlock the GIL before calling blocking

functions by using the rb_thread_blocking_region() API. This allows

5http://programmingzen.com/2010/07/19/the-great-ruby-shootout-july-2010/
6http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/10252

http://programmingzen.com/2010/07/19/the-great-ruby-shootout-july-2010/
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/10252

2.2. RUBY 11

parallel execution of code in a native OS threads. Doing this however

results in some limitations:

1. The called function must be thread safe

2. You cannot call ruby functions from within your extension

3. System calls like thread_mutex_lock() can’t be interrupted. This

means that timeout() won’t affect a function using these calls

While this is only useful for C extensions and does not allow "pure"

Ruby threads to run in parallel, it solves most of the "big" performance

problems for computationally expensive operations since most of them

are implemented as 3rd party libraries in C. This especially holds true

in our case where the external network calls are all handled by C-based

libraries. Guido van Rossum, inventor of the Python programming

language, even goes a step further and has this to say about the existence

of a global interpreter lock in modern Programming languages such as

Ruby and Python in one of his posts on the python-3000 mailing list 7:

Nevertheless, you’re right the GIL is not as bad as you would

initially think: you just have to undo the brainwashing you

got from Windows and Java proponents who seem to consider

threads as the only way to approach concurrent activities. Just

because Java was once aimed at a set-top box OS that did not

support multiple address spaces, and just because process

creation in Windows used to be slow as a dog, doesn’t mean

that multiple processes (with judicious use of IPC) aren’t a

much better approach to writing apps for multi-CPU boxes

than threads. Just Say No to the combined evils of locking,

deadlocks, lock granularity, livelocks, nondeterminism and

race conditions.

Especially when looking at languages made for highly parallel applications

such as Erlang or Mozart/Oz, the existence of lightweight user-level
7http://mail.python.org/pipermail/python-3000/2007-May/007414.html

http://mail.python.org/pipermail/python-3000/2007-May/007414.html

12 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

threads is widespread. For scaling over several CPUs, the current idea

is to just launch several processes or fork the VM. The fork() system

call allows for cheap duplication of a running process which is mostly

implemented using copy-on-write semantics. Copy operations are implemented

on a page-level and make fork() an alternative to investigate. It has to be

noted though, that fork() is highly dependant on its implementation in

the operating system. Here is a short excerpt from the Linux man page

for fork:

fork() creates a child process that differs from the parent

process only in its PID and PPID, and in the fact that resource

utilizations are set to 0. File locks and pending signals are not

inherited. Under Linux, fork() is implemented using copy-on-write

pages, so the only penalty that it incurs is the time and memory

required to duplicate the parent’s page tables, and to create a

unique task structure for the child.

2.2.4.2 MRI - Ruby 1.8

The VM that is currently most widely deployed is called "MRI", short for

Matz’s Ruby Interpreter. It was implemented by Ruby’s inventor Yukihiro

Matsumoto. It was the official VM for Ruby over the last few years and

has the version number 1.8.

Threads: MRI implements threads as lightweight green threads and

synchronizes them using a global interpreter lock.

C Extensions: MRI supports C Extensions

Garbage Collection: MRI uses a simple "mark and sweep" garbage collection

algorithm.

Misc: MRI is probably still the most compatible version for third party

libraries, although most library-developers are slowly moving to

1.9 compatibility. The changes between 1.8 and 1.9 are not that big,

so it is an easy port for most projects.

2.2. RUBY 13

2.2.4.3 YARV - Ruby 1.9

YARV (Yet Another Ruby VM) aka. Ruby 1.9 is the current, official Ruby

VM and the successor of Ruby 1.8 (MRI). It has a vastly improved performance

compared to 1.8.

Threads: YARV implements threads as native threads. They are, however,

still synchronized with a global interpreter lock.

C Extensions: YARV supports C Extensions

Garbage Collection: YARV still uses a simple "mark and sweep" garbage

collection algorithm.

Misc: Further performance improvements are available in the current

development version. Ruby 1.9 added coroutines called "Fibers"

for lightweight concurrency.

2.2.4.4 JRuby

JRuby is an implementation of Ruby running on the Java Virtual machine.

JRuby essentially compiles ruby source code down to Java bytecode. For

some of the dynamic features of Ruby, JRuby has to go through great

lengths to imitate them using the given set of JVM bytecodes and thus

does not reach native Java performance. At the time of writing, it ties

with Ruby 1.9 in terms of performance. An added bonus is the ability

to easily interact with Java libraries. This way, it can be used as "glue

code" to keep the verbosity of Java to a minimum while still being able

to leverage the high performance of the JVM.

Threads: JRuby uses operating system threads and doesn’t have a global

interpreter lock

C Extensions: JRuby can use C-extensions that use the Foreign Function

Interface (FFI)8. Some of the bigger libraries ship Java-based extensions

to create compatibility with JRuby. There is work on the way to fully
8http://github.com/ffi/ffi#readme

http://github.com/ffi/ffi#readme

14 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

support C extensions. A good recap of this can be found on Charles

Nutter’s Blog9. He is one of the Project leads for JRuby and has

valuable insight on the possible support for regular C extensions in

JRuby:

There’s a very good chance that JRuby C extension support

won’t perform as well as C extensions on C Ruby, but in

many cases that won’t matter. Where there’s no equivalent

library now, having something that’s only 5-10x slower

to call – but still runs fast and matches API – may be just

fine. Think about the coarse-grained operations you feed

to a MySQL or SQLite and you get the picture.

Garbage Collection: JRuby is able to use the generational garbage collector

available on the JVM.

Misc: JRuby is able to use a JIT compiler to enhance code execution

performance.

2.2.4.5 Rubinius

The Rubinius virtual machine is written in C++. It uses LLVM to compile

bytecode to machine code at runtime. The bytecode compiler and vast

majority of the core classes are written in pure Ruby. The achieved

performance and functionality gains over the last few months make

Rubinius one of the most promising Virtual Machines for the Ruby

programming language.

Threads: Rubinius uses operating systems threads in combination with

a global interpreter lock

C Extensions: Rubinius supports C-extensions (with or without FFI)

Garbage Collection: Rubinius uses a precise, compacting, generational

garbage collector
9http://blog.headius.com/2010/07/what-jruby-c-extension-support-means-to.

html

http://blog.headius.com/2010/07/what-jruby-c-extension-support-means-to.html
http://blog.headius.com/2010/07/what-jruby-c-extension-support-means-to.html

2.3. I/O MODEL (ASYNC VS THREADING) 15

Misc: Rubinius features a JIT compiler. At the time of writing, it is a bit

behind Ruby 1.9 or JRuby in terms of performance.

2.2.4.6 Misc

At the time of writing, there are other Implementations such as IronRuby,

a .NET implementation of the Ruby programming language, or Maglev, a

Ruby implementation with integrated object persistence and distributed

shared cache. While Maglev shows some nice performance numbers,

it is still considered alpha and should not be used in a production

environment at the moment.

2.2.4.7 Conclusion for the project

The complete support for C extensions and the performance enhancements

over MRI (Ruby 1.8) make YARV (Ruby 1.9) the main deployment platform

for the project. Remaining compatibility with JRuby and Rubinius is

an interesting option, but it is not a high priority. Especially with the

upcoming support for C Extensions in JRuby and the progress in Rubinius,

the compatibility between the different VMs should reach almost 100%

in the near future.

2.3 I/O model (async vs threading)

I/O related waits are one of the major performance problems when

designing a crawler. Network I/O is several orders of magnitude slower

than disk I/O and almost unpredictable in terms of request duration. A

single request to a website involves not only an HTTP request, but also

DNS resolution. Both of these steps can take from a few milliseconds to

several seconds, depending on the location of the target URL and the

performance of the respective servers.

An additional problem is that some of the domains that show up as links

on the web are either non-existent or in a segment of the internet that is

16 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

not reliably reachable from the Amazon EC2 network. Doing requests

to these systems in a serial manner will result in very low throughput. A

solution to this problem is running more than one request in parallel.

While it does not solve the problem of web servers that have a large

roundtrip time, it keeps connections to these servers from completely

blocking other operations.

The two ways of introducing parallelism to the crawling process are

either the use of threads or some form of non-blocking, asynchronous

I/O conforming to the reactor/proactor pattern. A discussion of the

implications of asynchronous I/O can be found in my paper "Event-Driven

I/O - A hands-on introduction"[9]. Especially because of the VM limitations

concerning threads, an asynchronous approach using the eventmachine

framework10 and libraries such as em-http-request11 , em-redis12 and

em-mysqlplus13 seemed beneficial to optimizing the system’s throughput.

There are voices in the developer community that question the usefulness

of non-blocking I/O in comparison to the top of the line Virtual Machine

and Operating System threading models. Especially for Java, Paul Tyma

has an excellent presentation up on his blog called "Thousands of Threads

and Blocking I/O - The old way to write Java Servers is New again (and

way better)"[10].

While his presentation is controversial, it offers good insights in the

changes to thread-costs that happened over the last few years. In the

case of the crawler project, however, these findings cannot be 100%

transferred. As mentioned in the Ruby section of this thesis (2.2), the

existence of a global interpreter lock makes threading a bit of a problem.

While quasi-parallel execution in C-based extensions is still possible by

unlocking the GIL, a single extension not doing this can stop the whole

crawler just because of, for example, an unresponsive DNS server.

10http://rubyeventmachine.com/
11http://github.com/igrigorik/em-http-request
12http://github.com/madsimian/em-redis
13http://github.com/igrigorik/em-mysqlplus

http://rubyeventmachine.com/
http://github.com/igrigorik/em-http-request
http://github.com/madsimian/em-redis
http://github.com/igrigorik/em-mysqlplus

2.4. AMAZON ELASTIC COMPUTE CLOUD 17

A series of great posts about this topic can be found on Ilya Grigorik’s

blog14. Especially his presentation "No Callbacks, No Threads: Async &

Cooperative Web Servers with Ruby 1.9"[11] does a great job explaining

the problems and drawing comparisons to other popular frameworks

that deal with asynchronous I/O (such as Node.JS). For the project, the

decision was to go asynchronous where needed and stay synchronous

and maybe introduce threading where performance is not the major

issue. While running synchronous code does stop the reactor loop

in eventmachine, CPU-bound operations take so little time that the

overhead in comparison to I/O operations can be ignored.

2.4 Amazon Elastic Compute Cloud

One of the requirements for the project was the ability for it to run on

Amazon Elastic Compute Cloud (also known as "EC2"). Amazon EC2 is a

service by Amazon that allows companies (and private users) to create

and boot up virtual servers. These servers are hosted in Amazon data

centres and based on the XEN virtualization technology.

2.4.1 Instance Types

Amazon offers several different hardware configurations. These are the

configurations from the Amazon Instance Types Webpage15 at the time

of writing. Note: According to Amazon16, "One EC2 Compute Unit (ECU)

provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or

2007 Xeon processor."

14http://www.igvita.com
15http://aws.amazon.com/ec2/instance-types/
16http://aws.amazon.com/ec2/

http://www.igvita.com
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/

18 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

Name RAM EC2 Compute Units storage bit I/O $/h

m1.small 1.7 GB 1 160 GB 32 moderate 0.085

m1.large 7.5 GB 4 (2 cores *2 units) 850 GB 64 high 0.34

m1.xlarge 15 GB 8 (4 cores * 2 units) 1690 GB 64 high 0.68

m2.xlarge 17.1 GB 6.5 (2 cores * 3.25 units) 420 GB 64 moderate 0.50

m2.2xlarge 34.2 GB 13 (4 cores * 3.25 units) 850 GB 64 high 1.00

m2.4xlarge 68.4 GB 26 (8 cores * 3.25 units) 1690 GB 64 high 2.00

c1.medium 1.7 GB 5 (2 cores * 2.5 units) 350 GB 32 moderate 0.17

c1.xlarge 7 GB 20 (8 cores * 2.5 units) 1690 GB 64 high 0.68

cc1.4xlarge 23 GB 2*Xeon X5570,quad-core 1690 GB 64 very high 1.60

One of the important limitations compared to other solutions is the lack

of small instances with a 64 bit architecture in Amazon’s lineup. A lot of

back-end systems that use memory mapped I/O need a 64 bit operating

system to work with large amounts of data. The MongoDB developers

for example had this to say17:

32-bit MongoDB processes are limited to about 2.5 gb of data.

This has come as a surprise to a lot of people who are used

to not having to worry about that. The reason for this is that

the MongoDB storage engine uses memory-mapped files for

performance. By not supporting more than 2gb on 32-bit,

we’ve been able to keep our code much simpler and cleaner.

This greatly reduces the number of bugs, and reduces the time

that we need to release a 1.0 product. The world is moving

toward all 64-bit very quickly. Right now there aren’t too many

people for whom 64-bit is a problem, and in the long term,

we think this will be a non-issue.

This makes MongoDB basically unusable on anything below a EC2 large

instance. While most other solutions tend to work on 32 bit, using a

EC2 large instance is highly beneficial for I/O throughput, provides a

17http://blog.mongodb.org/post/137788967/32-bit-limitations

http://blog.mongodb.org/post/137788967/32-bit-limitations

2.4. AMAZON ELASTIC COMPUTE CLOUD 19

64 bit environment and thus offers better database performance. The

Cassandra wiki describes the situation as follows when it comes to the

data access mode18:

mmapped i/o is substantially faster, but only practical on a

64bit machine (which notably does not include EC2 "small"

instances) or relatively small datasets. "auto", the safe choice,

will enable mmapping on a 64bit JVM. Other values are "mmap",

"mmap_index_only" (which may allow you to get part of the

benefits of mmap on a 32bit machine by mmapping only

index files) and "standard". (The buffer size settings that

follow only apply to standard, non-mmapped I/O.)

The downside of this is that the smallest 64bit-Instance available on EC2

today is the m1.large instance. This instance is four times as expensive as

the m1.small. While other "cloud hosting" providers offer 64 bit systems

for smaller VM instances (e.g. Rackspace), using Amazon EC2 allows the

project to leverage the knowledge of a large developer community. In this

case, using Amazon EC2 is also beneficial because of Acquia’s previous

experience with the service and the existing infrastructure within the

company.

2.4.2 Elastic Block Store

Amazon Elastic Block Store (EBS) provides block level storage volumes

for use with Amazon EC2 instances. In contrast to an instances "ephemeral

storage", EBS survives a shutdown or crash of the machine. This is

why Important data should always be saved on Amazon’s Elastic Block

Store when using EC2. An EBS device can be mounted just like a regular

blockdevice (even as a boot volume) and has the ability to create snapshots,

provided that the file system supports it (XFS for example does). Using

it as a a boot volume also allows switching between instance sizes (e.g.

from small to medium) without having to set up all services again. The

18http://wiki.apache.org/cassandra/StorageConfiguration

http://wiki.apache.org/cassandra/StorageConfiguration

20 CHAPTER 2. ARCHITECTURAL DECISIONS AND LIMITATIONS

problem with these upgrades is, that switching from a small EC2 instance

to a large EC2 instance also means switching from 32 bit to 64 bit. This is

usually not a good idea and a reinstallation is highly recommended.

Another interesting possibility when using EBS is the ability to use

more than one volume and add them together in a RAID configuration.

There are several benchmarks that prove the performance increase when

doing so. The MySQL performance blog has a comparison between a

single EBS volume and an EBS RAID configuration19, victortrac.com

offers a comparison of EBS against the ephermal disks20 and the heroku

blog21 offers more EBS specific benchmarks. More about the problems

with benchmarking EBS and ephemeral storage can be found in the

performance section (2.4.3) of this chapter. Many articles about EBS

highlight, that access times and throughput vary greatly depending on

the load of other instances on the same host node. This means that while

EBS can be faster than ephemeral storage, it is not consistent. Therefore

its main advantage is the ability to have persistent data and the possible

usage of a snapshot mechanism.

2.4.3 Performance

One major factor in the design of the crawler is the way that the EC2

platform virtualizes I/O operations. The back-end load against the

database is one of the key limitations for big parts of the project. While

most database storage engines are able to cache frequently requested

data, the amount of domains that will be collected will result in frequent

cache misses.

A good overview of the I/O behaviour of virtualized "cloud" servers

19http://www.mysqlperformanceblog.com/2009/08/06/
ec2ebs-single-and-raid-volumes-io-bencmark/

20http://victortrac.com/EC2_Ephemeral_Disks_vs_EBS_Volumes
21http://orion.heroku.com/past/2009/7/29/io_performance_on_ebs/

http://www.mysqlperformanceblog.com/2009/08/06/ec2ebs-single-and-raid-volumes-io-bencmark/
http://www.mysqlperformanceblog.com/2009/08/06/ec2ebs-single-and-raid-volumes-io-bencmark/
http://victortrac.com/EC2_Ephemeral_Disks_vs_EBS_Volumes
http://orion.heroku.com/past/2009/7/29/io_performance_on_ebs/

2.4. AMAZON ELASTIC COMPUTE CLOUD 21

can be found at the cloudharmony blog22. In our case, using a single

EC2 large instance seems to be the right choice when it comes to I/O

throughput. In general, an actual non-virtualized hard disc would be

beneficial when it comes to performance.

When reading benchmarks, it is important to pay attention to the official

Amazon EC2 documentation23. It mentions a penalty for the first write

to a block on the virtualized I/O devices. If people don’t pay attention

to this, benchmarks will produce invalid results. This is the matching

quote from the documentation:

Due to how Amazon EC2 virtualizes disks, the first write to

any location on an instance’s drives performs slower than

subsequent writes. For most applications, amortizing this

cost over the lifetime of the instance is acceptable. However, if

you require high disk performance, we recommend initializing

drives by writing once to every drive location before production

use.

22http://blog.cloudharmony.com/2010/06/disk-io-benchmarking-in-cloud.
html

23http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.
html?instance-storage-using.html

http://blog.cloudharmony.com/2010/06/disk-io-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/06/disk-io-benchmarking-in-cloud.html
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?instance-storage-using.html
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?instance-storage-using.html

Chapter 3

Back-end and Search

This chapter goes into detail about the different possibilities of persisting

data and the algorithms behind it. It looks at ways to make the saved data

searchable and evaluates current software-solutions to both problems.

3.1 Datastores

3.1.1 Categorization

One of the biggest problems in designing a crawler is the actual storage

of data. An estimated dataset with well over 100 million domains that has

a high number of reads and writes requires some further research when

it comes to possible storage back-ends. The main idea of this chapter is

to outline the possible technologies that store data in a persistent way.

When it comes to persistently storing data, we can currently distinguish

among 5 main categories of data-stores:

1. Relational database management systems

2. Column stores

3. Document stores

4. Key-Value stores

23

24 CHAPTER 3. BACK-END AND SEARCH

5. Graph databases

All of them offer a way to persist a document over an application

restart and make it network accessible. When quoting examples, this

paper will mostly concentrate on open-source projects that have an

active community.

3.1.1.1 Relational database management systems

The family of RDBMS1 are based on the idea that data can be represented

in a collection of related tables that store their data in columns and rows.

This idea was first coined by Edgar F. Codd in his paper "A Relational

Model of Data for Large Shared Data Banks"[1]. Most RDBMS focus on

being able to provide consistent data and the ability to enforce specific

rules on data types, relational constraints, and the ability to do ad-hoc

queries. For larger datasets, this is usually enabled by indexing the

entries using a data structure such as a b-tree. The implications of the

specific data structures will be discussed in chapter 3.2.

Most relational database management systems use SQL, the Structured

Query Language, as the primary way for developers to filter out a specific

subset of data. While features such as transactions or full consistency

for data can be fine-tuned, they still add to the systems complexity and

have a negative impact on the performance of writes and reads. The

major free implementations of RDBMS are MySQL and ProstgreSQL

and will be discussed in section 3.5.3. While there are also relational

databases that are available as software as a service (e.g. Amazon RDS),

using them would require access over a network connection. While

this would help with distributing the project, it would also limit the

maximum throughput compared to a local instance of a database.

1short for: Relational database management systems

3.1. DATASTORES 25

3.1.1.2 Column Stores

Column Stores manage their data inside of columns. They differ from the

relational schema of RDBMs in that they do not use rows, meaning that

the different saved records don’t need to share a common schema. They

still offer some internal structure when compared to pure Key-Value

stores. Another difference between Column stores and RDBMs is, that

most of the available open-source Column Store solutions don’t focus

on ACID properties or constraints between different sets of data. A

detailed explanation of these differences can be found in the paper

"Column-Stores vs. Row-Stores: How Different Are They Really?" by

Abadi, Madden and Hachem[6] This largest open-source projects providing

a column store are Hadoop/HBase2, Cassandra3 and Hypertable4

3.1.1.3 Document Stores

Systems that can be described as "document stores" actually have knowledge

about the data that they store. They usually are able to do basic operations

(e.g. increment an integer inside of a document) and usually support

map/reduce-type operations. Some (e.g. MongoDB) even offer "advanced"

data structures such as arrays and hashes. The most popular Document

stores at the time of writing are CouchDB5 and MongoDB6.

3.1.1.4 Key-Value Stores

Key-Value stores offer the simplest model of data storage. They basically

provide a networked persistence to what is commonly known as an

associative array (Ruby/Perl hashes, Python dictionaries, Java Hashtable).

Most of them offer only three operations:

1. put

2http://hbase.apache.org/
3http://cassandra.apache.org/
4http://hypertable.org/
5http://couchdb.apache.org/
6http://www.mongodb.org/

http://hbase.apache.org/
http://cassandra.apache.org/
http://hypertable.org/
http://couchdb.apache.org/
http://www.mongodb.org/

26 CHAPTER 3. BACK-END AND SEARCH

2. get

3. delete

One of the bigger examples often quoted in literature is Amazon’s Dynamo,

a distributed key-value store described in [23]. It is also cited as a design

inspiration by a lot of the bigger Key-Value store projects. Popular

open-source projects include Project Voldemort7, Riak8, Scalaris9, Berkley

DB10 and to some extend Redis11 (Redis also offers arrays and some other

data structures with the respective operations). Amazon SimpleDB is a

commercial offering by Amazon that provides a Key-Value interface to

data storage as software as a service.

Since Key-Value stores do not offer features such as complex query filters,

joins, foreign key constraints, sorting or triggers, their performance is

easily predictable and mainly a function of the amount of stored keys

(given that there is enough RAM to store the basic index structures).

Since the keys themselves don’t have an internal relation to one another,

scaling key value stores vertically is an easier task than doing the same for

their RDBMS counterparts. Key-Value stores are often used in combination

with an object serialization format such as Protocol Buffers, Thrift, BERT,

BSON, or plain JSON. These formats help storing complex objects as a

regular value.

3.1.1.5 Graph Databases

While there is a certain subset of graph databases that have specialized

in storing only certain graphs (triplestores, network databases...), we are

only paying attention to generic graph databases that can store arbitrary

graphs. These graph databases usually consist of 3 basic building blocks:

7http://project-voldemort.com/
8https://wiki.basho.com/display/RIAK/Riak
9http://code.google.com/p/scalaris/

10http://www.oracle.com/technology/products/berkeley-db/index.html
11http://code.google.com/p/redis/

http://project-voldemort.com/
https://wiki.basho.com/display/RIAK/Riak
http://code.google.com/p/scalaris/
http://www.oracle.com/technology/products/berkeley-db/index.html
http://code.google.com/p/redis/

3.1. DATASTORES 27

• Nodes

• Edges

• Properties

These items are combined to represent real world data. Graph databases

are optimized for associative data sets. They are a good fit for uses

such as tagging or metadata annotations. The crawler data would be an

interesting fit since it is basically just a tagging of domain-nodes with

several different data attributes (cms name, web server name, top level

domain, ...). Querying the data inside of a Graph Database usually means

traversing the graph along the edges of the nodes’ relationships. This

works fine for general "has this TLD" or "is powered by" relations, but

it is harder to model things like the amount of incoming links. While

setting it as a property does work, a search for every domain with more

than 300 links would require an extended data schema or the support

of a dedicated search library. One of the biggest open-source projects

implementing a graph database is Neo4j12.

3.1.2 Data store scalability

A key metric when evaluating data stores is the way they are able to deal

with a large number of documents. There are mainly two ways of doing

this:

1. Vertical scaling

2. Horizontal scaling

Vertical scaling is the ability to enhance performance by simply running

on a faster processor, more RAM, or faster storage. This scalability

completely focuses on a single-node operation. The higher the throughput

and the more optimized the algorithms behind the system, the less

urgent it is to actually have the need for horizontal scalability. In our

12http://neo4j.org/

http://neo4j.org/

28 CHAPTER 3. BACK-END AND SEARCH

case, being able to store, search, and query 100 million documents with

a modest amount of fields is a target that would allow us to keep all of

the back-end operation on a single machine, and only add additional

machines when we want a higher HTTP/analytical throughput. Horizontal

scalability describes the ability of the system to distribute data over

more than a single computer. In our project, this should happen in a

transparent way that does not require time-intensive or overly complex

administrative tasks when dealing with backups or software updates.

3.2 Datastructures

This section of the thesis is devoted to giving a high-level overview about

data structres that can usually be found in storage systems and the

implication of using them.

3.2.0.1 B-trees

In general, B-trees are balanced trees that are optimized for situations

in which there is not enough RAM to keep all of the data structure in

memory, and parts of it have to be maintained on a block device (e.g.

a magnetic hard-disc). B-Trees allow efficient insertion, updates, and

removal of items that are identified by a key. In our case, this would most

likely be the domain name.

The most common representative of the B-Tree family in data-storage

systems is the B+-Tree. The main difference between a B-Tree and a

B+-Tree is that one is not allowed to store keys in one of the in a B+-Tree’s

leaves. They are reserved for data only. The advantage of a B+-Tree

over a regular B-Tree is that it tends to have a large fan-out (number

of child nodes). This results in fewer indirections and thus fewer I/O

operations to reach a certain piece of data. This is especially helpful

with block based devices and one of the reasons why many file systems

(NTFS, ReiserFS, XFS, JFS) use B+-Trees for indexing metadata.

3.2. DATASTRUCTURES 29

Figure 3.1: B+-Tree mapping the numbers 1..7 to d1..7

According to Shaffer[17], when it comes to database systems, the B-tree

and its variations (B+-Tree, B*Tree, ...) are:

[...] the standard file organization for applications requiring

insertion, deletion, and key range searches. B-trees address

effectively all of the major problems encountered when implementing

disk-based search trees: 1. B-trees are always height balanced,

with all leaf nodes at the same level. 2. Update and search

operations affect only a few disk blocks. The fewer the number

of disk blocks affected, the less disk I/O is required. 3. B-trees

keep related records (that is, records with similar key values)

on the same disk block, which helps to minimize disk I/O on

searches due to locality of reference.

3.2.1 Hash-based

The idea behind a hash-based index is that the position of an arbitrary

document in a key-value store can be calculated easily. By giving the key

as the input to a special hashing function, it returns the documents/values

position allowing the system to jump directly to the memory-page in

question. After it arrives at the page, it does a simple linear scan to find

30 CHAPTER 3. BACK-END AND SEARCH

the key. The page scan is necessary because storing only a single value

per page (hence per key) would lead to extremely small pages, which

would lead to a huge amount of necessary management information.

Feature-wise, hash-indexes usually do not support range queries like

"greater than". There are exceptions to this rule though: Cassandra uses

an order-preserving hash system that allows these query elements. An

interesting performance comparison between Hash and B+-Tree can be

found in the Berkley DB documentation13:

There is little difference in performance between the Hash

and Btree access methods on small data sets, where all, or

most of, the data set fits into the cache. However, when a data

set is large enough that significant numbers of data pages no

longer fit into the cache, then the Btree locality of reference

described previously becomes important for performance

reasons. For example, there is no locality of reference for

the Hash access method, and so key "AAAAA" is as likely

to be stored on the same database page with key "ZZZZZ"

as with key "AAAAB". In the Btree access method, because

items are sorted, key "AAAAA" is far more likely to be near key

"AAAAB" than key "ZZZZZ". So, if the application exhibits

locality of reference in its data requests, then the Btree page

read into the cache to satisfy a request for key "AAAAA" is

much more likely to be useful to satisfy subsequent requests

from the application than the Hash page read into the cache

to satisfy the same request. This means that for applications

with locality of reference, the cache is generally much more

effective for the Btree access method than the Hash access

method, and the Btree access method will make many fewer

I/O calls. However, when a data set becomes even larger,

the Hash access method can outperform the Btree access

method. The reason for this is that Btrees contain more
13http://www.oracle.com/technology/documentation/berkeley-db/db/

programmer_reference/am_conf_select.html

http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/am_conf_select.html
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/am_conf_select.html

3.2. DATASTRUCTURES 31

metadata pages than Hash databases. The data set can grow

so large that metadata pages begin to dominate the cache

for the Btree access method. If this happens, the Btree can

be forced to do an I/O for each data request because the

probability that any particular data page is already in the

cache becomes quite small. Because the Hash access method

has fewer metadata pages, its cache stays "hotter" longer in

the presence of large data sets. In addition, once the data set

is so large that both the Btree and Hash access methods are

almost certainly doing an I/O for each random data request,

the fact that Hash does not have to walk several internal pages

as part of a key search becomes a performance advantage for

the Hash access method as well.

The Postgres 8 documentation is a little bit more definitive in its wording

when it comes to Hash Indexes14:

Note: Testing has shown PostgreSQL’s hash indexes to perform

no better than B-tree indexes, and the index size and build

time for hash indexes is much worse. For these reasons, hash

index use is presently discouraged.

As can be seen, the specific implementation of the indexes, the amount

of stored data, and the access patterns all change the performance of

the solution in question. This is why benchmarking with actual data and

real-world load is an important step in the progress of developing this

project. Synthetic benchmarks will probably not provide exact results in

this case.

3.2.2 R-tree-based

While this data-structure is not of primary interest for our project, R-Trees

show up in data-storage systems from time to time, so knowing what

they do without going into too much detail seems beneficial. R-trees are
14http://www.postgresql.org/docs/8.0/interactive/indexes-types.html

http://www.postgresql.org/docs/8.0/interactive/indexes-types.html

32 CHAPTER 3. BACK-END AND SEARCH

data structures similar to B-Trees. They are primarily used for indexing

multi-dimensional data such as geo-coordinates. They got described by

Antonin Guttman (UC Berkley) in his 1984 paper "R-Trees - A Dynamic

Index Structure for Spatial Searching"[22]. CouchDB, for example, has a

fork called "GeoCouch" that uses R-Trees for geospatial indexing. SQLite

also offers R*Tree support15 as a compile time option. There are also

other options for indexing geo-spatial data. MongoDB, for example,

offers geospatial indexing16 using a geographic hash code on top of

standard MongoDB B+-Trees. However, the MongoDB manual entry

mentions that:

The problem with geo-hashing is that prefix lookups don’t

give you exact results, especially around bit flip areas. MongoDB

solves this by doing a grid by grid search after the initial prefix

scan. This guarantees performance remains very high while

providing correct results.

3.2.3 Merkle-tree-based

Merkle trees (also known has "Hash-trees") are not primarily used to

store data efficiently. They are a type of data structure that encodes

summary information about a larger piece of data in tree form. This

information can be used to verify data. Especially in a distributed

data-storage systems, this can be used to detect inconsistencies between

replicas faster, while also minimizing the amount of transferred data.

This is often described as an "anti entropy" process. More information

is provided by the Amazon Dynamo paper[23] in chapter 4.7 "Handling

permanent failures: Replica synchronization". The dynamo-based data-stores

Cassandra and Riak also provide this feature. The Riak team mentions

merkle trees in their architecture document17:

15http://www.sqlite.org/rtree.html
16http://www.mongodb.org/display/DOCS/Geospatial+Indexing
17http://riak.basho.com/edoc/architecture.txt

 http://www.sqlite.org/rtree.html
http://www.mongodb.org/display/DOCS/Geospatial+Indexing
http://riak.basho.com/edoc/architecture.txt

3.2. DATASTRUCTURES 33

Riak attempts to move data toward a consistent state across

nodes, but it doesn’t do so by comparing each and every

object on each node. Instead, nodes gossip a "merkle tree",

which allows them to quickly decide which values need comparing.

The Cassandra documentation mentions a difference between the original

dynamo model and the one in Cassadra as follows18:

The key difference in Cassandra’s implementation of anti-entropy

is that the Merkle trees are built per column family, and they

are not maintained for longer than it takes to send them

to neighboring nodes. Instead, the trees are generated as

snapshots of the dataset during major compactions: this

means that excess data might be sent across the network,

but it saves local disk I/O, and is preferable for very large

datasets.

Other uses of hash trees can be found in the ZFS filesystem19 and also

in the Google Wave protocol20

Figure 3.2: Merkle-Tree

18http://wiki.apache.org/cassandra/AntiEntropy
19http://blogs.sun.com/bonwick/entry/zfs_end_to_end_data
20http://www.waveprotocol.org/whitepapers/wave-protocol-verification

http://wiki.apache.org/cassandra/AntiEntropy
http://blogs.sun.com/bonwick/entry/zfs_end_to_end_data
http://www.waveprotocol.org/whitepapers/wave-protocol-verification

34 CHAPTER 3. BACK-END AND SEARCH

3.2.4 Trie-based

A trie21, also known as a prefix-tree, is an ordered tree data structure

optimized for storage of key-value data. The basic idea behind storing

strings in a trie is that each successive letter is stored as a separate node

in the tree. To find out if the word ’car’ is in the list of stored words, one

starts at the root and looks up the ’c’ node. After having located the ’c’

node, c’s children are searched for an ’a’ node, and so on. To differentiate

between ’car’ and ’carpet’, each completed word is ended by a previously

defined delimiter. The definition of a Trie by the Information Technology

Laboratory by the US National Institute of Standards and Technology

(NIST) is the following22:

Definition: A tree for storing strings in which there is one

node for every common prefix. The strings are stored in extra

leaf nodes.

A typical use case is the storage of language dictionaries used for spell

checking or input fields that should auto-complete (e.g. eMail addresses

in a mail program). An example of a software using tries to manage data

is Lucene, the library powering the Solr search service. Since Lucene

treats most data internally as strings, working with numeric ranges

can be greatly accelerated by using the Trie data structure to store the

values. Figure 3.4 shows how a range query can be mapped to a Trie. For

further details, Edward Fredkin’s original paper about Tries called "Trie

Memory"[20] should be a good starting point.

21The origin of the term trie stems from the word "retrieval"
22http://www.itl.nist.gov/div897/sqg/dads/HTML/trie.html

http://www.itl.nist.gov/div897/sqg/dads/HTML/trie.html

3.2. DATASTRUCTURES 35

Figure 3.3: Trie storing the words: epic, epoll, marc, mars, man, win, winter

Compared to regular Binary Search Trees, the key lookup in a Trie is faster.

The Trie takes a maximum of O(m) operations where m is the length

of the key while a Binary Search Tree uses O(m * log n) also depending

on n, the amount of entries in the tree. Another advantage is the space

savings that a Trie has in comparison to a Binary Search Tree when using

a large number of small strings as keys. This is because the keys can

share common prefixes, and only use that space once, no matter how

many strings there are.

36 CHAPTER 3. BACK-END AND SEARCH

Figure 3.4: Range query in a Trie

3.2.5 Bitmap-based

A bitmap index is a special kind of index that has traditionally been used

for data-entries that only have a limited amount of possible values. A

bitmap index uses bit arrays as its main data-structure and can answer

most queries by performing bitwise logical operations on them. They

have the nice property that multiple bitmap indexes can be merged into

one combined index to resolve simple queries over multiple fields. An

example of a simple AND query can be seen in figure 3.5. Bitmap indexes

were usually used for low cardinality values such as gender, weekday etc.

In this case, a bitmap index can have a large performance advantage

over commonly used B+-Trees. In "An Adequate Design for Large Data

Warehouse Systems: Bitmap index versus B-tree index" by Zaker et al

[19], the authors go even as far as saying that for certain situations, the

cardinality of the values does not matter. Their conclusive statement is

as follows:

Thus, we conclude that Bitmap index is the conclusive choice

for a DW designing no matter for columns with high or low

3.2. DATASTRUCTURES 37

cardinality.

Figure 3.5: Bitmap-Index

Interestingly, bitmap indexes are barely implemented in current data-storage

systems. While there are some exceptions within the SQL space (e.g.

Oracle23), and internal usage in special search solutions (e.g. Lucene’s

OpenBitSet class). Sadly, none of the common open-source data stores

in the SQL space (e.g. MySQL, PostgreSQL) or the NoSQL space offer

user-definable bitmap indexes to the end user so far. Some search

solutions (e.g. Solr, Sphinx, PostgreSQL) are using them internally, but
23http://download.oracle.com/docs/cd/B13789_01/server.101/b10736/

indexes.htm

http://download.oracle.com/docs/cd/B13789_01/server.101/b10736/indexes.htm
http://download.oracle.com/docs/cd/B13789_01/server.101/b10736/indexes.htm

38 CHAPTER 3. BACK-END AND SEARCH

offer only limited user control at the time of writing. A typical use-case

of bitmap indexes can be found in PostgreSQL, which uses them to

combine B-Tree indexes when using AND or OR queries24. More details

about bitmap indexes can also be found in Chan and Ioannidi’s "Bitmap

index design and evaluation"[18].

An interesting project that provides a highly optimized bitmap index

implementation is "FastBit"25 created by UC Berkley in connection with

the U.S. Department of Energy. The project has a lot of available publications26

explaining the details of its implementation such as its compression

algorithm for bitmaps and other technical properties of the system.

3.3 Generic Problems

This section of the paper is dedicated to describing some commonly seen

problems with storage solutions that could be found while evaluating

specific software products. They seem to be common problems and thus

should be checked for every new product.

3.3.1 HTTP persistent connections

HTTP persistent connections are also known as "HTTP keep-alive".

The idea behind them is to use the same TCP connection to send and

receive multiple HTTP requests/responses, as opposed to opening a

new connection for every single request/response pair. Especially when

working with data stores that have an HTTP based interface (e.g. CouchDB),

it is important to rely on a HTTP library that is able to keep the TCP

connection to the data store open. Some libraries establish a new connection

for each request, resulting in a lot of overhead. For Ruby, the Patron

24http://www.postgresql.org/docs/current/static/indexes-bitmap-scans.
html

25https://sdm.lbl.gov/fastbit/
26http://crd.lbl.gov/~kewu/fastbit/publications.html

http://www.postgresql.org/docs/current/static/indexes-bitmap-scans.html
http://www.postgresql.org/docs/current/static/indexes-bitmap-scans.html
https://sdm.lbl.gov/fastbit/
http://crd.lbl.gov/~kewu/fastbit/publications.html

3.3. GENERIC PROBLEMS 39

project27 is an HTTP library that is based on libcurl and supports the

creation of session objects that use libcurl’s persistent HTTP connections.

3.3.2 Locking

One of the biggest problems with storage systems, in the case of our

project, is that the system will have a lot of mixed writes and reads

in a highly parallel fashion. Some systems like MongoDB or MySQL

with the MyISAM storage engine are locking the whole database (or

Database table) when updating a single document/row. This leads to a

situation where a lot of parallel processes pile up requests for hundreds

of other domains just because of an update to a single domain. This

cuts down the performance of the whole system. Especially when using

distributed crawlers, this could lead to latency even worsening that

situation. Possible solutions for this are:

• Using a storage back-end that has some form of optimistic locking

or multi-version concurrency control. Systems which provide this

include CouchDB , Riak, and the InnoDB storage engine (used with

MySQL).

• Using a queueing system that can buffer write requests. While it

would put the whole system into an eventually consistent state,

it would at least help to take wait-time away from the crawling

processes by buffering some operations (e.g. writing updates,

inserting results)

• Using caches for the high-volume requests. Links to prominent

domains like twitter.com that are encountered (and thus checked)

frequently could be kept in a LRU-cache, a cache that discards the

least recently used items first, and be answered locally instead of

reaching out to the database. This would keep the total amount

of read-requests down. The problem with this approach is that

the cached requests can’t be recorded to the data-storage without
27http://github.com/toland/patron

http://github.com/toland/patron

40 CHAPTER 3. BACK-END AND SEARCH

adding an additional write. This makes it hard to keep track of the

number of incoming links to a certain domain. Incoming links

are a good metric for the domain’s popularity. A possible solution

is to keep track of hits locally and write out the new number in

exponential intervals.

It has to be noted that looking at the internals of the databases’ locking

mechanism is an important step in evaluating the storage back-end.

While MySQL using MyISAM does have table level locks, MyISAM offers

things like concurrent Inserts28 that allow new inserts to run while a

’SELECT" call is in progress. These options might make the usage of

large grained locks tolerable. Especially with MySQL, the amount of

tuning options is overwhelming at first, and a lot can be gained by

understanding them. A good source for this kind of information is "High

Performance MySQL, Second Edition" that got published by O’Reilly

Media[21]. More discussion about MySQL can be found in the respective

section (3.5.3) of this thesis.

3.3.3 Append-only storage and compacting

Some databases use an append-only file format that, instead of changing

an old document, will create a new document when writing updates to

the database. This allows the database to keep the old data in a consistent

state in case of a crash during the write process. The problem with some

of these systems is that they have to "compact" the data-files on disc

from time to time to clean the old versions of the file that are not in

use any more. CouchDB, for example, uses a simple approach by just

traversing over the whole file and copying the most recent version of

each record into a new file. After the traversal is done, an atomic switch

to the new file happens. The problem with this approach is that it slows

down performance heavily when being used on a system with a lot of

updates (e.g. incoming link counters) and a slow I/O subsystem (e.g.

virtualized EC2 storage). In my experiments, inserts were coming in at
28http://dev.mysql.com/doc/refman/5.0/en/concurrent-inserts.html

http://dev.mysql.com/doc/refman/5.0/en/concurrent-inserts.html

3.4. SEARCH POSSIBILITIES 41

such a fast rate that the compaction process took days to finish while

still doubling the space requirements of the data on disk. This holds

especially true when other I/O intensive operations (e.g. backups) are

running at the same time.

3.4 Search possibilities

This section will give an overview about the different techniques to make

a large data collection searchable and the resulting implications.

3.4.1 Classification

One of the important features when choosing a storage back-end is the

ability to filter our data according to certain criteria. There are three

major categories of searches:

1. Specific domain Searches for a specific domain and its connected

data. Example: A search for all saved details about "example.org"

2. Property combinations. Searches for a combination of saved properties.

Example: All Drupal sites running on the IIS web server that are

ranked among the top 1 million websites worldwide according to

Alexa

3. Fulltext search. A search for all documents that have a certain

substring in a specified field. An example would be "All domains

that have the word ’cake’ in their domain name"

When searching for a specific domain, all of the previously discussed

data-stores offer a primary key lookup. In our case, this lookup would be

a way of getting the data referenced by a website’s domain name. This is

the minimum a system should be able to do for us.

Property combinations require a bit more of a data schema or computing

capacity to work efficiently. While using map-reduce to simply iterate

42 CHAPTER 3. BACK-END AND SEARCH

over all of the gathered domains would result in the correct answer, it

would also take a long time unless being done on a large cluster. This

can be optimized by only looking at a certain subset of domains. In

our example case, simply keeping a list for each Content Management

System with the matching domain names would greatly reduce the

total amount of documents that would need to be scanned from "all

domains" to "all domains in the drupal-collection". The downside of

this approach is, that managing these collections adds extra complexity

to the application logic. An automated way of doing this internally is

provided by some of the back-ends (most RDBMS, search solutions like

lucene/solr or sphinx, some document stores like MongoDB). The RAM

requirements for keeping these indexes in memory grow with the total

amount of collected domains. The more "free form" your queries are,

the more indexes one has to add to the data in order to keep query

performance at an acceptable limit. An interesting solution for "fixed"

queries is offered by CouchDB’s incrementally updated views which

require only one index per view and spread the processing power that is

needed over every insert/update/delete operation. Aside from RDBMS

and Document Stores, Graph databases are also a nice fit when querying

for single attributes, since their natural data-model is highly optimized

for this kind of situation.

Fulltext search: Filtering data for a field that has a specific substring

with a wildcard in the end of the term (example*) usually just requires a

back-end that organizes the searchable data in B+Trees. This is available

in most data-stores that go beyond the simple key-value model. Examples

would be MongoDB, MySQL or Tokyo Cabinet. If there is a leading

wildcard, the data-store would usually have to reverse the field in question

("example.com" -> "moc.elpmaxe") and save the inverted field into a

seperate B+Tree. This behaviour is offered by Solr with the use of the

"reversedwildcardfilterfactory".

3.4. SEARCH POSSIBILITIES 43

3.4.2 Indexation

One of the most common ways to keep data searchable is the usage

of so called "indexes". The "inverted index" is a data structure that is

used to store a mapping from content (e.g. a word or a primary key) to a

position inside of the database. This enables a database system to move

away from full table scans to simply accessing the term that is looked for

directly with as few redirections as possible. More about the commonly

used data structures to implement these reverse indexes (e.g. B+-Trees,

Bitmap-Indexes) can be found in section 3.2. An interesting use case

of these indexes is the ability to combine them using boolean logic. A

simple example would be the search for "term A AND term A". To solve

this query, the database only has to look up the resulting positions for a

search for term A and simply do an AND merge of this list with the results

for term B. After merging the intersection of these lists using a logical

AND, the resulting list points to documents that feature both terms.

Figure 3.6: Reverse Index

One of the important things to keep in mind is the RAM and CPU usage of

these data-structures. For every added or deleted entry to the data-store,

all corresponding indexes have to be updated. Especially when trying to

make all of the fields in the data searchable, RAM usage might become

44 CHAPTER 3. BACK-END AND SEARCH

a problem when operating on a single node. In early experiments with

MongoDB, the use of a complete set of indexes led to MongoDB having to

swap indexes in and out of RAM every few seconds, keeping a database

lock in the process and decimating the possible operations per second.

Possible solutions for this problem are:

• Relying on a data store that supports sparse indexes. These indexes

are able to only insert a certain subset of data (e.g. fileds that are not

NULL). This can help if a lot of the values are not available in every

document (in our case: CMS specific data). Otherwise, indexation

of a seldom used column would lead to a data structure having to

carry NULL values for the documents that do not have the field (our

worst case: a B+-Tree with 100 million entries compared to one

with 10000). The downside of this is, that searches for entries that

are in the not-indexed part of the sparse index don’t benefit from

it (e.g. every document where the ’cms_version’ field is NULL). In

our case, these queries probably won’t matter all that much to the

end user.

• Using a caching solution for writes. While the storage back-end

would still need to manage the data structures, updating the data

structures would not keep the actual crawling processes waiting.

• Using an external search service. This would allow us to only

update the search index every few hours. Inserts into the actual

data store will not have to update several data structures on every

write. The downside is that new results won’t be searchable instantly

and that data would be stored in two different locations.

3.4.3 Map/Reduce

Map reduce is a programming model that allows the processing of large

data sets by distributing the workload onto different distributed clients.

This usually goes hand in hand with distributed storage of the data. Some

solutions like CouchDB offer a map-reduce interface, but primarily use it

3.4. SEARCH POSSIBILITIES 45

to generate "views" of the data. Using incremental updates, these views

can be kept current. The problem with incremental views is that the

possible queries have to be known in advance and are limited by the

generated view.

The more common use-case of map-reduce are distributed ad-hoc queries

over several servers. While using map-reduce over several machines

would scale almost linearly, it is also a batch oriented system and not

designed for real-time searches. The amount of servers needed to filter a

subset of more than 100 million documents (in our case: 1 document

= 1 domain) and return a result in an interactive search context (<10

seconds) make it not a feasible option. While real-time search is not a

proper fit, it could still be used to distribute load to worker processes.

The downside of this would be the need to package all application logic

into map and reduce phases.

3.4.4 Search and the dynamo model

An interesting topic is the combination of Amazon Dynamo based systems,

such as Riak or Cassandra, and the ability to search data stored inside

of them. The general idea is to create an inverted index (as described

in section 3.4.2) of the existing documents and somehow store it inside

of the data-store itself. Since dynamo based systems usually partition

data using a consistent hashing algorithm, the only thing left to do is

to split the index up according to certain criteria and store the broken

down pieces. There are basically two different approaches to splitting

up this index:

1. Document based partitioning

2. Term based partitioning

A good additional source of information about this topic is a presentation29

that Basho employee Rusty Klophaus gave at the Berlin Buzzwords
29http://berlinbuzzwords.blip.tv/file/3813596/

http://berlinbuzzwords.blip.tv/file/3813596/

46 CHAPTER 3. BACK-END AND SEARCH

conference in 2010. In this presentation, he explains the design behind

"Riak Search", the soon-to-be-released addition of Lucene on top of the

dynamo based Riak data-store.

3.4.4.1 Document based partitioning

The idea behind this is to store an inverted index for every document

in the partition where the document itself is stored. This means that a

query for a certain term has to hit every partition to check weather or

not any documents contain that term. One advantage in a multi-server

environment is that a single query tends to have a lower latency because

it can hit all available nodes in parallel. After the slowest node has

answered, you have got all possible results. It is also nice in terms of index

distribution, since it disperses the index the same way the documents

are dispersed over the system, evening out the storage requirements.

The problem is that the total query-throughput of the system is smaller

because every single query will be passed on to all of the available nodes.

Running more than one query in parallel means that query 2 has to

basically wait for query 1 to finish. This way of partitioning the inverted

index also leads to a lot of seeks on the disks of the nodes, and to a lot of

network connections.

3.4.4.2 Term based partitioning

The idea behind term based partitioning is to split the document into

its terms, and store the inverted index according to its terms (e.g. single

words in a text). This means that the terms of a single document will be

scattered around the whole system. If two documents have the same

term, both of them will be referenced by the partition holding this term.

This means that finding all documents containing a certain term is

relatively easy. The system just has to use its consistent hashing function

on this term and will be able to immediately find the inverted index

pointing to all of the documents containing this term. The downside

is that putting a new document into the inverted index requires writes

3.5. EVALUATION 47

to a lot of partitions, compared to the document based partitioning

approach. Another downside is that the query latency tends to be higher

because there is only one single node answering the query. The upside

of this is that parallel queries will probably be split between several

nodes of the system and not have to hit all of them at once. One of the

biggest problems with this approach is the "hot spot" problem. Since

this approach will always map the same term to the same partition, a

popular term will always end up on the same partition. This means that

all searches for this term will end up on that single node.

3.5 Evaluation

This section of the paper should give an overview of the possible candidates

for back-end storage of the collected data. The main focus in the selection

of the participants was on open-source projects that have an active

community and that still show frequent progress in development.

3.5.1 MongoDB

3.5.1.1 Features

One of the most promising data storage back-ends these days is MongoDB.

It is a document store that has an extremely rich data-model that includes

data structures such as arrays, associative arrays and supports atomic

operations30 like integer increments etc. Internally, MongoDB saves data

in the BSON format. BSON is a binary encoded serialization of JSON-like

documents with an open specification available at bsonspec.org.

MongoDB uses B+-Trees to be able to allow ad-hoc queries that are

comparable in features to an SQL SELECT. Atomic modifiers allow things

like incrementing integers on the server side or pushing data into arrays.

There is also the possibility of running Javascript code on the server and

30http://www.mongodb.org/display/DOCS/Atomic+Operations

http://www.mongodb.org/display/DOCS/Atomic+Operations

48 CHAPTER 3. BACK-END AND SEARCH

MongoDB even provides an interface for Javascript-based map/reduce

tasks. MongoDB also has a feature called "GridFS" that allows applications

to store files of any size inside the database without adding extra complexity

to the user’s source code. Internally, the usual data structures are used

to save the chunks of data. Accessing and modifying data happens using

a pretty intuitive syntax. The developer basically constructs a document

with the things that he is looking for. As an example, a search for a

student named John that is enrolled would result in a query like this

(Javascript syntax):

db.my_collection.find({"name":"John"}, {"enrolled":true})

It also has advanced query operators like greater than or less than:

db.my_collection.find({ "name":"John", "age" : { $gt: 25} })

It even supports search using regular expressions, e.g. a case-insensitive

search for John or Jon:

db.my_collection.find({ "name" : /^joh?n/i });

Updates work basically the same way, only that you have to also supply a

second document with the update instructions. Atomically incrementing

the semester of everybody named John would look like this

db.my_collection.update({ "name":"John" }, { $inc: { "semester" : 1 } });

A simple update of a field would look like this:

db.my_collection.update({"student_id":62123 }, { "enrolled": false });

MongoDB offers an interactive shell that allows one to do simple searches

like this on the fly. There are also tools like "MongoHub"31 that allow

easy introspection and visual navigation through the stored data.

MongoDB officially provides drivers for C, C++, Java, Javascript, Perl,

PHP, Python, and Ruby. There is also a wealth of community supported

31http://mongohub.todayclose.com/

http://mongohub.todayclose.com/

3.5. EVALUATION 49

drivers for nearly any programming language available. Links to them

can also be found in the official MongoDB wiki32. They also feature an

alpha quality REST interface33.

3.5.1.2 Scalability

The single node performance of MongoDB is more than impressive.

Even without trying to horizontally scale MongoDB, it offers better

performance than all of the other comparable systems (RDBMS / Document

stores). It has to be noted that MongoDB, by default, has data durability

constraints that are a little bit more relaxed than some of the other

database solutions. This, however, is not a real problem for the data in

our project. Inserts and updates in MongoDB also offer the possibility of

setting a "safe" and "fsync" option that will make the call return either

when the data has been written to the server or when the server has

fsynced the data to disk. The official MongoDB blog contains a good

article34 about MongoDB’s approach to single-node durability.

Concerning the need for vertical scalability, the official MongoDB website

collects independent third party benchmarks in their wiki35. Horizontal

scaling with replication and sharding is in heavy development and

looks promising. The downside is that it requires different categories

of machines, and does not follow a uniform approach as such as the

dynamo based Cassandra, Riak or Project Voldemort. Servers have to

specifically be configured as a "Master", marked as routing instances,

and also manually removed from the cluster, which drives up complexity

in operation of the system.

32http://www.mongodb.org/display/DOCS/Drivers
33http://www.mongodb.org/display/DOCS/Http+Interface
34http://blog.mongodb.org/post/381927266/what-about-durability
35http://www.mongodb.org/display/DOCS/Benchmarks

http://www.mongodb.org/display/DOCS/Drivers
http://www.mongodb.org/display/DOCS/Http+Interface
http://blog.mongodb.org/post/381927266/what-about-durability
http://www.mongodb.org/display/DOCS/Benchmarks

50 CHAPTER 3. BACK-END AND SEARCH

3.5.1.3 Limitations

MongoDB uses memory-mapped I/O, this limits its ability to store data

bigger than 2.5 GB on 32 bit systems. A big problem for our project is

the fact that MongoDB currently uses global locking when manipulating

data. This means that a long running write will block all other reads and

writes. MongoDB is developing rapidly and adding "yield" mechanisms

to allow long-running operations to give over control to other waiting

operations. There is however the problem that the locking occurs on

process level and writes to database A can block reads on database B.

3.5.1.4 Search

As previously mentioned, MongoDB offers its own internal query mechanism.

To be able to deal with millions of documents, however, the need for

putting indexes on a lot of fields would slow down inserts/updates and

also require a lot of RAM to be able to update the matching parts of the

B+-Tree of every index. Another downside is the fact, that MongoDB

does not support sparse indexes at the moment. Especially for fields that

don’t show up in every document, including a NULL value in the index

drives up memory usage in the generated B+-Trees and also uses up disk

space. Faceting is possible by using a map/reduce task, this however

does not perform particularly well with a large number of documents

and results in slowdowns. During the last few releases, the yielding of

locks during the map-reduce phase was introduced which helped a bit

with the problem of slowdowns.

Projects also exist that try to integrate MongoDB into external search

solutions like Solr. Photovoltaic36, for example, uses MongoDBs replication

internals to pipe changes into a Solr Index as they happen. This is not

as convenient as Solr’s internal update mechanism that supports some

data-stores such as MySQL as a data source, but it is at least a possibility.

36http://github.com/mikejs/photovoltaic

http://github.com/mikejs/photovoltaic

3.5. EVALUATION 51

3.5.1.5 Operations

Backups can be easily achieved by calling the "fsync" command on the

database, setting a write lock and then creating a file system snapshot

(using XFS and EBS). The MongoDB homepage offers a good overview of

the different backup possibilities 37. The sharding is still more complicated

than dynamo based solutions (namely Riak or Cassandra), but development

is moving fast and the active mailing lists and IRC channel are a big plus

compared to other solutions with less active communities (e.g. tokyo

cabinet).

3.5.1.6 Conclusion for the Project

MongoDB would be a great fit in terms of data storage. Especially the

atomic operations such as increments help to keep the code base small

and clean. A downside is the need for 64 bit instances in connection with

EC2. This drives up costs when compared to other solutions because the

minimum configuration would be an EC2 large instance.

Horizontal scaling would only be necessary if we actually wanted to

use the database for search operations and create indexes that would

take up more RAM than a single machine could provide in a cost effective

manner. The effect of the global locking would have to be re-evaluated

over time. Almost every new major version of the database over the

last months eased the locks by introducing yielding operations and fine

tuning the databases behaviour.

Search for specific subsets of the data would require a third party tool

like Solr This, however, might change if sparse indexes are introduced to

MongoDB. In that case, all of the Drupal specific fields could be indexed

without including millions of documents that do not have the field.

Another solution to this problem might be splitting the data into several

databases according to the detected CMS. This would require manual

37http://www.mongodb.org/display/DOCS/Backups

http://www.mongodb.org/display/DOCS/Backups

52 CHAPTER 3. BACK-END AND SEARCH

management of data which would increase code complexity. The current

locking policy (process wide, not database wide) also complicates this

solution.

3.5.2 CouchDB

3.5.2.1 Features

Apache CouchDB is one of the older "NoSQL" solutions. It features

a RESTful JSON API that makes it easy to access using HTTP. Another

interesting feature is the ability to use Javascript or Erlang based incremental

MapReduce operations to create something similar to "views" in RBDMS.

There are also different third party implementations of "view servers"38

that allow the user to write map-reduce functions in other languages

(Python39, Ruby40 or Java41). Using the third party view servers requires

some additional setup. Since views can be generated incrementally on

every insert, update, or delete, they have a pretty constant (low) overhead

during regular operations, yet still allow complex transformations and

filtering of the stored data.

CouchDB’s internal multi-version concurrency control design automatically

provides snapshot capabilities but also adds a disk space penalty that

makes the database require compaction from time to time. CouchDB

uses B-trees internally, but adds some slight modifications. This is

described in the official CouchDB book42:

CouchDB’s B-tree implementation is a bit different from the

original. While it maintains all of the important properties,

it adds Multi Version Concurrency Control (MVCC) and an

append-only design. B-trees are used to store the main database

38http://wiki.apache.org/couchdb/View_server
39http://code.google.com/p/couchdb-python/
40http://github.com/candlerb/couchdb_ruby_view
41http://github.com/cloudant/couchjava
42http://books.couchdb.org/relax/appendix/btrees

http://wiki.apache.org/couchdb/View_server
http://code.google.com/p/couchdb-python/
http://github.com/candlerb/couchdb_ruby_view
http://github.com/cloudant/couchjava
http://books.couchdb.org/relax/appendix/btrees

3.5. EVALUATION 53

file as well as view indexes. One database is one B-tree and

one view index is one B-tree. MVCC allows concurrent reads

and writes without using a locking system. Writes are serialized,

allowing only one write operation at any point in time, for

any single database. Write operations do not block reads

and there can be any number of read operations at any time.

Each read operation is guaranteed a consistent view of the

database, How this is accomplished, is at the core of CouchDB’s

storage model. The short answer is that because CouchDB

uses append-only files, the B-tree root node must be rewritten

every time the file is updated. However, old portions of the

file will never change, so every old B-tree root, should you

happen to have a pointer to it, will also point to a consistent

snapshot of the database.

Another interesting feature of the CouchDB project is "futon". It is an

included web interface that helps the user to administer CouchDB. It

allows the user to view and manipulate stored data. It can also be used

to administer most aspects of CouchDB, such as compaction, creation

of views, or setting up replication.

3.5.2.2 Scalability

Thanks to the previously mentioned MVCC append-only approach and

Erlang as a programming language, CouchDB offers one of the best

concurrency behaviours in the field allowing good vertical scalability.

Horizontal scalability in CouchDB basically consists of incremental

replication with bi-directional conflict detection and resolution. Setting

up replication is easily available over CouchDB’s REST interface. A simple

HTTP POST request to "/_replicate" with this body is all that is necessary:

"source":"$source_database","target":"$target_database"

Sharding is not supported on the server side. There are, however, third

party frameworks that provide clustering/partitioning for CouchDB (an

54 CHAPTER 3. BACK-END AND SEARCH

example would be couchdb-lounge43).

3.5.2.3 Limitations

CouchDB has no limitations for database sizes on 32 bit systems such

as MongoDB. However, it does have other problems when it comes

to large amounts of data. In my tests, running CouchDB on an small

EC2 instance resulted in problems when it came to compacting its

append-only storage format. Under production load, the compaction

process could not follow up with updates to stored data and was not able

not finish compaction in a reasonable amount of time (a day). This has

also been described as a generic problem of some append only storage

back-ends in section 3.3.3.

3.5.2.4 Search

Thanks to its copy on write nature, CouchDB offers an interesting approach

to indexes. CouchDB supports the creation of "views" according to a

custom search query. These views will be saved as a collection and are

updated incrementally on every access. It is also possible to update

them at fixed intervals or after every document update. The views can

be created in Javascript or Erlang. An example of a Javascript based view

from the CouchDB wiki44 would be this:

Map:

function(doc) {

emit(null, doc);

}

Reduce:

function(doc) {

if (doc.Type == "customer") {

emit(doc.LastName, {FirstName: doc.FirstName, Address: doc.Address});
43http://tilgovi.github.com/couchdb-lounge/
44http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views

http://tilgovi.github.com/couchdb-lounge/
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views

3.5. EVALUATION 55

emit(doc.FirstName, {LastName: doc.LastName, Address: doc.Address});

}

}

This would create a view that includes all customers from the database

with their full names and addresses. The interesting thing is that this

would allow one to look up customers by first OR last name because both

of them were emitted as a key. The resulting view would look like this:

{

"total_rows":4,

"offset":0,

"rows":

[

{

"id":"64ACF01B05F53ACFEC48C062A5D01D89",

"key":"Katz",

"value":{"FirstName":"Damien", "Address":"2407 Sawyer drive, Charlotte NC"}

},

{

"id":"64ACF01B05F53ACFEC48C062A5D01D89",

"key":"Damien",

"value":{"LastName":"Katz", "Address":"2407 Sawyer drive, Charlotte NC"}

},

{

"id":"5D01D8964ACF01B05F53ACFEC48C062A",

"key":"Kerr",

"value":{"FirstName":"Wayne", "Address":"123 Fake st., such and such"}

},

{

"id":"5D01D8964ACF01B05F53ACFEC48C062A",

"key":"Wayne",

"value":{"LastName":"Kerr", "Address":"123 Fake st., such and such"}

},

56 CHAPTER 3. BACK-END AND SEARCH

]

}

While this would allow us to create certain fixed views and even to keep

faceted searches up-to-date easily, ad hoc queries are still impossible

unless all of them are known in advance and have been prepared as a

view. Another (third party) option of searching within CouchDB is the

"CouchDB-lucene"45 project. CouchDB-lucene integrates the lucene

search service on top of CouchDB. This would allow ad-hoc searches

using the lucene syntax.

3.5.2.5 Operations

Since CouchDB uses an append only storage back-end, just creating

snapshots (even without an fsync command) will still result in a valid

data structure. This is one of the advantages of CouchDB when it comes

to the operation of the database. Notes on this can be found over at the

CouchDB WIki46.

3.5.2.6 Conclusion for the Project

While CouchDB is a great choice in terms of parallel access and performance,

the amount of updates (e.g. for link counters) that we need to be able to

do would require constant compacting of the back-end. This would slow

down other operations because of the heavy I/O load and almost double

the disk space requirements. If CouchDB ever optimized the back-end

compaction, it would be worth a second evaluation, but at the time of

writing, it is a bad choice from an operations perspective.

45http://github.com/rnewson/couchdb-lucene
46http://wiki.apache.org/couchdb/FilesystemBackups

http://github.com/rnewson/couchdb-lucene
http://wiki.apache.org/couchdb/FilesystemBackups

3.5. EVALUATION 57

3.5.3 MySQL and PostgreSQL

3.5.3.1 Features

One of the differences between MySQL and PostgreSQL is their design

philosophy. While PostgreSQL is a single, unified database server, MySQL

is a network front-end to a number of different storage engines. Feature

wise, the two open source RDBMS offer a wide range of options. While

most of the transactional features are not really important for our project,

there are some things that help keep the code clean and enhance performance,

such as:

• Ability to fine-tune data types (e.g. using an unsigned integer for

link counters since they are by definition not negative)

• Atomic increments (e.g. "UPDATE MyTable SET LinkCount=LinkCount+1

Where domain=example.org")

• On-the-fly compression (if we wanted to save the HTML code of

certain sites)

• Ability to fine-tune indexation (e.g. only indexing the first 5 letters

of the cms name. After the fifth letter, it is usually unique enough)

• Support for partial indexes that disregard NULL values (only in

Postgres, not MySQL)

3.5.3.2 Scalability

Both PostgreSQL and the InnoDB storage back-end in MySQL rely on

MVCC and are able to provide non-locking parallel access. When it

comes to MySQL, the choice of database back-end (MyISAM, InnoDB,

MariaDB, ...) is one of the most important choices when it comes

to performance. Especially with InnoDB, the database also requires

extensive tuning of cache-sizes to get to a good performance level. A

great resource to read up on the different MySQL storage options is the

"High Performance MySQL" book published by O’Reilly[21]. PostgreSQL

58 CHAPTER 3. BACK-END AND SEARCH

and MySQL performance lags behind the other solutions when it comes

to simple key-value access of data.

Both of them support replication and sharding as a form of horizontal

scalability either internally or using third party tools, but it is nowhere

near the level of ease of use that most of the NoSQL solutions offer. In

general, more thought has to go into the creation of a data-schema and

fine-tuning parameters than for most other data-stores.

3.5.3.3 Limitations

Besides the comparatively low performance numbers, the solutions don’t

have any direct limitations concerning operations or general use in our

project. Looking at operational constraints of other data-stores, the

maturity of the RBDMS projects seems to be beneficial.

3.5.3.4 Search

While both MySQL and Postgres support the creation of indexes (usually

B+-Tree, sometimes hash-based), optimized search solutions such as

Solr offer better performance and flexibility. MySQL and Postgres are

supported by SOLR’s data import handler and can be indexed without

the need for another third party tool.

An interesting feature of the internal indexation implementations is the

use of adaptive hash indexes in MySQL’s InnoDB back-end47. This feature

automatically generates Hash indexes in addition to the regular B+-Tree

when it would benefit performance. With the amount of data we handle,

however, this might not come into action. Another interesting feature is

the support for partial Indexes when using PostgreSQL48. The main idea

behind this is that a column that is seldom used (e.g. the version number

that is only collected for Drupal sites) will not be indexed as a "NULL"

47http://dev.mysql.com/doc/refman/5.0/en/innodb-adaptive-hash.html
48http://www.postgresql.org/docs/8.4/static/indexes-partial.html

http://dev.mysql.com/doc/refman/5.0/en/innodb-adaptive-hash.html
http://www.postgresql.org/docs/8.4/static/indexes-partial.html

3.5. EVALUATION 59

value but would simply be ignored. This way, the size of the B+-Tree is

only connected to the amount of rows that include this column, and not

to the total amount of columns. The use of partial indexes could make it

possible to rely on the internal indexing mechanisms of PostgreSQL to

index our collected data.

3.5.3.5 Operations

MySQL and Postgres are mature and stable solutions that offer a great

amount of information and tooling. On-line backups can be done in a

variety of ways and relying on already existing solutions limits the need

for extra documentation. For InnoDB databases, Percona’s Xtrabackup49

provides on-line backup functionality. The included "mysqldump" tool

can also do on-line backups of InnoDB tables using the "single-transaction"

switch. For PostgreSQL, the included pg_dump tool offers similar functionality.

Backups using Amazon EBS and file system snapshots are also possible.

3.5.3.6 Conclusion for the Project

The use of a relational database system allows for seamless integration

with external search services such as Solr or Sphinx, while offering a great

amount of tooling and available expertise. If it is possible to keep up with

the necessary amount of operations per second, long term storage in

one of the systems seems to be a good compromise between ease of use

from an operational standpoint and performance. The only downside

is the overhead of having to use SQL for simple operations and the

performance penalty of having to support unneeded ACID constraints.

3.5.4 Tokyo Cabinet

3.5.4.1 Features

Tokyo cabinet is developed and sponsored by Mixi, the Japanese equivalent

of Facebook. It is a fast and feature-rich library that offers several

49https://launchpad.net/percona-xtrabackup

https://launchpad.net/percona-xtrabackup

60 CHAPTER 3. BACK-END AND SEARCH

different data-structures:

B+-Tree: A regular B+-Tree, allowing several values for a single key. It

supports prefix and range matching on a key.

Hash: A hash-based database allowing only a single value per key.

Fixed-length: High performance data-structure containing an array of

fixed-length elements.

Table: A column store with support for indexation and queries.

Tokyo cabinet has excellent single-node performance numbers and is

leading the field together with MongoDB. It also provides on-the-fly

compression of data (bzip, gzip) and does fine-grained record level

locking. Tokyo cabinet is only responsible for data-storage; a network

interface is provided by "Tokyo Tyrant". Tokyo Tyrant supports asynchrnous

I/O with epoll/kqueue and can be used in a highly parallel manner.

An interesting feature of Tokyo Tyrant is the ability to extend it using

scripts in the Lua programming language. Ilya Grigorik has covered this

extendibility in a great blog post50. The use of lua allows the easy creation

of server-side atomic commands such as the incrementing of integer

numbers. The scripting extensions can be either record-locking or use a

global lock.

Bindings for Tokyo-Cabinet and Tokyo-Tyrant are available for almost

any major programming language (including Java, Ruby, Erlang, Lua,

Python, and Haskell). A subset of Tokyo Tyrant functions is also available

via the memchached protocol and HTTP in case a native library is not

available in the language of choice.

50http://www.igvita.com/2009/07/13/extending-tokyo-cabinet-db-with-lua/

http://www.igvita.com/2009/07/13/extending-tokyo-cabinet-db-with-lua/

3.5. EVALUATION 61

3.5.4.2 Scalability

The single node performance of Tokyo Cabinet is one of its biggest

advantages. It delivers comparable numbers to MongoDB and usually

is faster than other data-stores. For large amounts of data, tuning of

the b+-Tree parameters is necessary. Horizontal scalability would need

to be part of Tokyo Tyrant. Tokyo Tyrant is the network interface to

Tokyo Cabinet. It offers Master-Master and Master-Slave replication.

Automatic sharding is not part of Tokyo-Tyrant itself, however there are

third party libraries like LightCloud51 that use Tokyo Tyrant as a back-end.

Access to LightCloud from Ruby is still in development52 and adds further

dependencies to the project.

3.5.4.3 Limitations

Sadly, the community surrounding Tokyo Cabinet is not as vibrant as the

one around projects like MongoDB or CouchDB. A lot of the engineering

blog posts are in Japanese and the only central point for the english-speaking

community is a mailing list53 and a wiki54.

While there are reports of corrupted data-files from time to time, I

haven’t encountered any problems when evaluating the database with

real world data. In case of a problem, Toru Maesaka highlights low-level

recovery tools in his blog post "How to recover a Tokyo cabinet database

file"55. Tokyo Cabinets successor Kyoto Cabinet has even less available

information. For both of them, tuning of startup parameters is necessary

when trying to access more than a few million documents without

heavy speed degradation. The only real information about important

parameters and their meaning is currently available at James Edward

51http://opensource.plurk.com/LightCloud/
52http://github.com/mitchellh/lightcloud
53http://groups.google.com/group/tokyocabinet-users
54http://tokyocabinetwiki.pbworks.com/
55http://torum.net/2010/01/how-to-recover-a-tokyo-cabinet-database-file/

http://opensource.plurk.com/LightCloud/
http://github.com/mitchellh/lightcloud
http://groups.google.com/group/tokyocabinet-users
http://tokyocabinetwiki.pbworks.com/
http://torum.net/2010/01/how-to-recover-a-tokyo-cabinet-database-file/

62 CHAPTER 3. BACK-END AND SEARCH

Gray II’s blog in his series on Tokyo Cabinet56.

3.5.4.4 Search

Tokyo Cabinet offers support for indexation using the "Table" database.

The performance while testing it with 60 million documents isn’t usable

in production, even when indexing the columns. A second option would

be the use of "Tokyo Dystopia", a full-text search system that integrates

within Tokyo Cabinet and should provide better performance. Sadly, the

missing community behind the solution is one of the main reasons for

not evaluating the Tokyo Dystopia in detail.

3.5.4.5 Operations

Backup and replication are included with Tokyo Tyrant and the "tcrmgr"

tool that is shipped with it, but are not an optimal solution. Using "tcrmgr

copy", a backup copy of the database is being created. Sadly, this blocks

incoming connections to the server. Another possibility would be the

booting of a process that acts as a read-slave for the backup procedure.

3.5.4.6 Conclusion for the Project

While the Tokyo-family of products offers interesting functionality and

great performance, the missing community and resources for operating

it make it a sub-par choice for the project.

3.5.5 Riak

3.5.5.1 Features

Riak is an open-source Erlang-based implementation of Amazon’s Dynamo[23]

created by a company called "Basho". One of the differences from some

of the other open-source Dynamo implementations (e.g. Cassandra)

is that Riak actually tries to stay close to the original paper and uses a

56http://blog.grayproductions.net/articles/tokyo_cabinets_keyvalue_
database_types

http://blog.grayproductions.net/articles/tokyo_cabinets_keyvalue_database_types
http://blog.grayproductions.net/articles/tokyo_cabinets_keyvalue_database_types

3.5. EVALUATION 63

vector clock implementation for conflict resolution. Details about Vector

clocks can be found on the official Basho Blog in the excellent posts

"Why Vector Clocks are Easy"57 and "Why Vector Clocks are Hard"58.

In addition to the Dynamo paper, Riak offers Javascript-based Map/Reduce

to filter out certain subsets of data or do simple calculations (such as

maximum, minimum or average). They also provide built in map-reduce

helpers in Erlang59 that assist in the creation of high performance versions

of these tasks. Riak also has the ability to use HTTP Link Headers

(as defined in RFC 2068 [14], section 19.6.2.4) to create connections

between different records and allow something called "Link walking"

which helps to annotate data with links, and thus enabling more than

simple key-value queries. "Link walking" has been described in the "Link

walking by example" post60 on the basho blog. Interaction with Riak can

be done with a REST API or Google’s Protocol Buffers (which have less of

an overhead). Ruby libraries exist for both protocols. Another interesting

feature is Riak’s support for pluggable back-end storage systems. While

it originally used InnoDB, the developers switched over to their own

system called "Bitcask". There are also experimental back-ends such as

a Redis backend61 for Riak.

3.5.5.2 Scalability

Concerning horizontal scalability, Riak supports elastically adding and

removing machines from a server-cluster while automatically balancing

the load on each machine. When adding a new node to a running cluster,

it automatically starts taking an equal share of the existing data from

the other machines in the cluster, as well as an equal share of all new

requests and data. The mechanism behind this is the automatic division

of the cluster’s data space into partitions (64 by default). Upon adding

57http://blog.basho.com/2010/01/29/why-vector-clocks-are-easy/
58http://blog.basho.com/2010/04/05/why-vector-clocks-are-hard/
59http://hg.basho.com/riak_kv/src/tip/priv/mapred_builtins.js
60http://blog.basho.com/2010/02/24/link-walking-by-example/
61http://github.com/cstar/riak_redis_backend

http://blog.basho.com/2010/01/29/why-vector-clocks-are-easy/
http://blog.basho.com/2010/04/05/why-vector-clocks-are-hard/
http://hg.basho.com/riak_kv/src/tip/priv/mapred_builtins.js
http://blog.basho.com/2010/02/24/link-walking-by-example/
http://github.com/cstar/riak_redis_backend

64 CHAPTER 3. BACK-END AND SEARCH

a new node to the cluster, it claims an equal share of the partitions,

meaning that every other node has a fewer partitions to worry about.

When removing a node, the reverse happens. The removed node hands

partitions back to the remaining nodes in the cluster.

Vertical scalability is enhanced by Riak’s back-end storage engine called

"Bitcask". The design principles are described in the paper "Bitcask

- A Log-Structured Hash Table for Fast Key/Value Data"[15] by Justin

Sheehy and David Smith. Jeff Darcy has run some benchmarks and

presented the results in his "Bitcask Rocks" blogpost 62. The current

memory usage is 32 bytes per key (20 bytes hash + 4 bytes file id + 8 bytes

offset). This would allow us to store 100 million keys in less than 3 GB

of RAM. According to the riak IRC channel, this number will be brought

down over time using optimizations such as Burst tries63. More details

about the possible optimizations can be found in a chat transcript from

the official IRC channel64.

3.5.5.3 Limitations

When using map-reduce operations to filter data, the map operation

requires a list of keys that should be used with the map operation. Since

our goal is to select a subset of all of our data, we would have to pass all

available keys (-> domain names). Riak allows the passing of a whole

collection of keys (a so called "bucket"), but the manual has this to say

about the process:

You may also pass just the name of a bucket ("inputs":"mybucket",...),

which is equivalent to passing all of the keys in that bucket

as inputs (i.e. "a map/reduce across the whole bucket"). You

should be aware that this triggers the somewhat expensive

"list keys" operation, so you should use it sparingly.

62http://pl.atyp.us/wordpress/?p=2868
63http://portal.acm.org/citation.cfm?id=506312
64http://gist.github.com/438065

http://pl.atyp.us/wordpress/?p=2868
http://portal.acm.org/citation.cfm?id=506312
http://gist.github.com/438065

3.5. EVALUATION 65

Since we are dealing with several million keys, using the "list keys"

operation is sadly not something that we can consider in a real-time

search environment. While finishing the thesis, Justin Sheehy put up a

post to the Riak mailing list titled "list_keys is less bad"65 in which he

describes some optimizations that promise improved performance of

up to 10 times. Evaluating the performance of the map/reduce queries

might be something to consider once the changes have been merged

into a stable release.

3.5.5.4 Search

Since map-reduce operations are currently not feasible, and Riak does

not offer any other options so far, an interesting approach could be the

use of an external search service (Solr or Sphinx) together with Riak’s

"Post-Commit hooks"66. These hooks allow the execution of Erlang code

after a successful write (update or deletes are also considered writes).

This way, the data could be posted to the web-service part of the search

service and real-time searches could become possible. Basho is working

on their own implementation of this called "Riak Search"67. At the time

of writing, however, this feature is not available to the general public.

3.5.5.5 Operations

Riak is a nicely designed piece of software from an operations perspective.

It does not require special nodes; all of them are equal. Updating software

versions is as easy as taking down a node, updating it, and then bringing

it back online. This can be done one by one until the whole cluster runs

the updated version. Centralized backups (and restores) can be done

using the Riak command line tools68. Since Riak is a distributed system,

doing file system snapshots might work if there were only one machine
65http://lists.basho.com/pipermail/riak-users_lists.basho.com/

2010-August/001811.html
66http://wiki.basho.com/display/RIAK/Pre-+and+Post-Commit+Hooks
67http://www.basho.com/riaksearch.html
68https://wiki.basho.com/display/RIAK/Command-Line+Tools#

Command-LineTools-backup

http://lists.basho.com/pipermail/riak-users_lists.basho.com/2010-August/001811.html
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2010-August/001811.html
http://wiki.basho.com/display/RIAK/Pre-+and+Post-Commit+Hooks
http://www.basho.com/riaksearch.html
https://wiki.basho.com/display/RIAK/Command-Line+Tools#Command-LineTools-backup
https://wiki.basho.com/display/RIAK/Command-Line+Tools#Command-LineTools-backup

66 CHAPTER 3. BACK-END AND SEARCH

in the cluster and the file system storage back-end (riak_kv_fs_backend)

is used. This is defiantly not recommended for production use.

3.5.5.6 Conclusion for the Project

While Riak would be a good solution in terms of pure data storage

and scalability, there are some deficits. The missing ability to filter out

certain subsets of data easily, the limitations for map-reduce operations,

and the missing integration with third party search services make it a

unsatisfactory choice for our project.

3.5.6 Cassandra

3.5.6.1 Features

Cassandra is a Java-based open source implementation of the system

described in Amazon’s dynamo paper[23] and was initially implemented

by the Facebook engineering team. However, it does differ in some

aspects from the original paper. For example, it does not use vector

clocks for conflict resolution (such as Riak). Instead, it uses timestamps.

This requires all of the client machines (not servers!) to be NTP synced.

Cassandra also moved away from the original partition-based consistent

hashing over to key ranges for replication and sharding, while adding

functionality like order-preserving partitioners and range queries. Cassandra

can also function as a back-end for the map-reduce framework Hadoop,

and provide data stored in Cassandra to Hadoop jobs.

3.5.6.2 Scalability

Concerning horizontal scalability, dynamo based systems distribute data

well over several machines in a cluster. While Cassandra is really similar

to Riak in this regard, there are some differences between the two. When

adding a machine to a Cassandra cluster, by default Cassandra will take

on half the key range of whichever node has the largest amount of data

stored. This can be fine-tuned, but in general leads to a way of balancing

3.5. EVALUATION 67

that is less smooth than Riak’s partition based approach. It also results

in a problem when lots of machines in a cluster are overloaded by a

tiny amount. If all nodes in an N-node cluster were overloaded, you

would need to add N/2 new nodes. It has to be said that Cassandra also

provides a tool (’nodetool loadbalance’) that can be run on each node to

rebalance the cluster manually.

3.5.6.3 Limitations

Cassandra’s data-model consisting of Keyspaces and Column Families

is defined in an XML file. Currently, changing the data-model at this

level requires a rolling reboot of the entire cluster. Its competitor Riak

allows the creation of new "buckets" with a changed data-model on

the fly. The upcoming version 0.7, however, will feature live schema

updates, according to the official Cassandra wiki69. Something that is

common with current dynamo based systems is the missing support for

atomic operations (e.g. incrementing Integer numbers). Although there

is a story for this in the Cassandra bugtracker70, it would require the

inclusion of the open-source coordination service Apache Zookeeper71,

a close clone of Google’s "Chubby" system72.

3.5.6.4 Search

An interesting project called "lucandra"73 allows one to store the data

structures used by the Lucene/Solr search service inside Cassandra itself.

While this does not help with the actual indexation of content, it does

help to distribute the disk requirements of the data structures, while also

allowing more than one search service accessing the same data. This

could help upgrading a cluster node without losing the ability to search

the data. The storage of a reverse index was actually the original use-case

69http://wiki.apache.org/cassandra/LiveSchemaUpdates
70https://issues.apache.org/jira/browse/CASSANDRA-721
71http://hadoop.apache.org/zookeeper/
72http://labs.google.com/papers/chubby.html
73http://github.com/tjake/Lucandra

http://wiki.apache.org/cassandra/LiveSchemaUpdates
https://issues.apache.org/jira/browse/CASSANDRA-721
http://hadoop.apache.org/zookeeper/
http://labs.google.com/papers/chubby.html
http://github.com/tjake/Lucandra

68 CHAPTER 3. BACK-END AND SEARCH

of Cassandra at Facebook. The indexation of content would still have to

be the task of custom code that pushes changed records to Solr.

3.5.6.5 Operations

Cassandra is a fairly low maintenance tool when it comes to operations

because of its auto-balancing features. Backups can be done in two ways

according to the operations part of the Cassandra wiki74. The first way of

doing backups is to either use the "nodetool snapshot" command or to

create file systems snapshots of the single nodes themselves. The wiki

mentions this about the implications of snapshotting:

You can get an eventually consistent backup by flushing all

nodes and snapshotting; no individual node’s backup is guaranteed

to be consistent but if you restore from that snapshot then

clients will get eventually consistent behaviour as usual.

Another option is using the "sstable2json" and "json2sstable" commands

that will take a node’s local Cassandra datafile as an input argument and

export the saved data in JSON format. This also has to be done on

every node in the cluster. Currently there is no "central" backup solution

comparable to Riak’s "riak-admin backup" command. Concerning monitoring,

it has to be noted that Cassandra exposes internal metrics as JMX data,

the common standard in the JVM world.

3.5.6.6 Conclusion for the Project

Cassandra is an interesting project in that it allows the easy distribution

of back-end data over several nodes. The downside is that it does not

offer any direct search possibilities. The only advantage to Riak that

can be currently found for our project is the already existing third party

integration for storing Lucene/Solr data and the possible interaction

with Hadoop (although Riak offers limited map/reduce too).

74http://wiki.apache.org/cassandra/Operations

http://wiki.apache.org/cassandra/Operations

3.5. EVALUATION 69

3.5.7 Miscellaneous

There are a few other interesting storage back-end systems that, at the

time of writing, look promising but either do not offer any advantages

over already discussed solutions, or need some more time to build up

a community before using them in production. This section will give a

short overview of other projects that were considered.

3.5.7.1 Terrastore

Terrastore75 is a Java-based document store built on top of the Terracotta

Plattform76. It automatically partitions data over several cluster nodes

and has a HTTP REST interface. It supports atomic server-side operations

such as integer increments, or even the execution of Javascript functions.

Documents uploaded to the storage engine have to be encoded as JSON

data.

An interesting feature is the integration of Elastic Search into Terrastore

which would allow fulltext-queries within the stored data. From an

operations perspective, Terrastore distinguishes between "master" and

"server" nodes. While master nodes provide cluster management and

storage services, server nodes provide actual access to Terrastore data

and operations. This means that the setup involves more work than with

systems like Cassandra or Riak which have "equal" nodes.

Terrastore has a nice technical basis, but is still a very new project and

mainly developed by a single lead-developer (Sergio Bossa). Terrastore

itself is also a pretty Java-centric project and while the HTTP interface is

usable from Ruby, a dedicated client library would be a nice addition. In

my limited performance measurements, the initial single-node performance

with smaller data samples (< 1 million) was comparable to other databases,

but when testing samples growing into the tens of millions of documents,

75http://code.google.com/p/terrastore/
76http://www.terracotta.org/

http://code.google.com/p/terrastore/
http://www.terracotta.org/

70 CHAPTER 3. BACK-END AND SEARCH

there was a steep drop in insertion performance. This is understandable

since neither Terrastore nor the included ElasticSearch have been optimized

for single node operation. In general, the project shows great potential

and should be re-evaluated after another few months.

3.5.7.2 Amazon SimpleDB

SimpleDB is a commercial web service provided by Amazon that allows

storage and retrieval of schemaless rows of data. While SimpleDB would

be an interesting fit for our data, there are some limitations77. There is

a maximum response size for "SELECT" calls (1 MB, 2500 items) and a

maximum of 10 GBs of data per domain that would require additional

code.

Another limitation detailed in the "Cloud Tips: How to Efficiently Forklift

1 Billion Rows into SimpleDB" Blogpost78 by practicalcloudcomputing.com

is a throttling that occurs at about 70 singleton PUT-operations per

SimpleDB domain per second. This would require batching access to

simpleDB using batched PUTs79 which, in turn, would require additional

code.

While the additional costs of using SimpleDB might even out with the

ability to use smaller EC2 instances when offloading data-storage to

SimpleDB, the extra code required to work arround the SimpleDB limitations

does not seem to be worth the effort for a one person project.

3.5.7.3 Project Voldemort

Project Voldemort is another Java-based dynamo clone that offers a

simple key-value interface to data. While it is a perfectly fine solution,
77http://docs.amazonwebservices.com/AmazonSimpleDB/latest/

DeveloperGuide/index.html?SDBLimits.html
78http://practicalcloudcomputing.com/post/284222088/

forklift-1b-records
79http://aws.amazon.com/about-aws/whats-new/2009/03/24/

write-your-simpledb-data-faster-with-batch-put/

http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?SDBLimits.html
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?SDBLimits.html
http://practicalcloudcomputing.com/post/284222088/forklift-1b-records
http://practicalcloudcomputing.com/post/284222088/forklift-1b-records
http://aws.amazon.com/about-aws/whats-new/2009/03/24/write-your-simpledb-data-faster-with-batch-put/
http://aws.amazon.com/about-aws/whats-new/2009/03/24/write-your-simpledb-data-faster-with-batch-put/

3.5. EVALUATION 71

the community behind Riak and Cassandra is more active these days and

provides better integration with the Ruby programming language. Riak

and Cassandra also offer more features on top of the dynamo model (e.g.

map/reduce functionality with Riak or range queries with Cassandra).

3.5.7.4 Neo4j

Neo4J is a graph database that operates on nodes, edges, and relationships

instead of the usual rows, columns, or key-value pairs. Treating relationships

as "first class citizens" could be an interesting fit for our data schema that

mainly consists of a domain and its various properties ("is a Drupal site",

"is located in Germany", etc.). Neo4j seems to be mainly suggested as an

embedded database rather than a standalone process that is accessible

over a network connection. It offers an impressive vertical scalability in

that it can handle billions of nodes on a single server configuration.

While it is hard to find proper benchmarks on the web, initial tests

showed these numbers to be true. Another interesting property is that

access speed while traversing the graph does not depend on the size

of the graph, but remains nearly constant. Since the vertical scalability

is impressive, the lack of "proper" horizontally scaling is not a high

priority item. The homepage80 mentions that it "can be sharded to scale

out across multiple machines", but there is no support for automatic

server-side sharding. Sharding has to be done manually by the client.

Neo4j also offers Lucene integration81 to do a fulltext indexation of nodes.

Since our main query use-case does not require full text indexation, but

could be satisfied by the relationships provided in the graph, the usage

of this feature for the project would have to be evaluated further. There is

a feature complete ruby library called Neo4j.rb82 that allows access from

ruby to Neo4j. Sadly, Neo4j.rb it is limited to JRuby and can’t be used from

any of the other Ruby VMs. While there is some work on the way to create

80http://neo4j.org/
81http://components.neo4j.org/index-util/
82http://github.com/andreasronge/neo4j

http://neo4j.org/
http://components.neo4j.org/index-util/
http://github.com/andreasronge/neo4j

72 CHAPTER 3. BACK-END AND SEARCH

a REST server for neo4j and details are available on the projects wiki83

and in the introducing blog post84, it is currently considered unstable

and not a good choice for the project.

In general, Neo4j would be an interesting fit, but the small size of its

community and the missing network interface exclude it as primary

choice for the project.

3.6 External search

While it is easy to find a current "nosql"-data-store that offers great

performance or scalability, it is hard to find one that allows easy ad-hoc

search functionality. High performance ad-hoc searches require additional

data structures to be able to keep CPU usage and search time down

to a minimum. Something good about our use-case is that real-time

indexation of incoming data is not a big priority, and updating the

index with newly added domains once a day is more than enough.

Specialized search services can help with high-performance searches

through millions of domains. This chapter should give a short overview

over the possible options.

3.6.1 Sphinx

3.6.1.1 Overview

Sphinx is an open-source full-text search server written in C++. While

it operates as a standalone server, it can also be integrated into MySQL.

"SphinxSE" offers a MySQL storage engine that, despite the name, does

not actually store any data itself. The official documentation85 describes

it as follows:

83http://wiki.neo4j.org/content/Getting_Started_REST
84http://blog.neo4j.org/2010/04/neo4j-rest-server-part1-get-it-going.

html
85http://www.sphinxsearch.com/docs/current.html

http://wiki.neo4j.org/content/Getting_Started_REST
http://blog.neo4j.org/2010/04/neo4j-rest-server-part1-get-it-going.html
http://blog.neo4j.org/2010/04/neo4j-rest-server-part1-get-it-going.html
http://www.sphinxsearch.com/docs/current.html

3.6. EXTERNAL SEARCH 73

It is actually a built-in client which allows MySQL server to

talk to searchd, run search queries, and obtain search results.

All indexing and searching happen outside MySQL. Obvious

SphinxSE applications include:

• easier porting of MySQL FTS applications to Sphinx;

• allowing Sphinx use with programming languages for

which native APIs are not available yet;

• optimizations when additional Sphinx result set processing

on MySQL side is required (including JOINs with original

document tables or additional MySQL-side filtering).

3.6.1.2 Data input

One of the (minor) downsides of the Sphinx search server is the restriction

it poses on source data. This is a direct quote from the official Sphinx

documentation:

There are a few different restrictions imposed on the source

data which is going to be indexed by Sphinx, of which the

single most important one is:

ALL DOCUMENT IDS MUST BE UNIQUE UNSIGNED NON-ZERO

INTEGER NUMBERS (32-BIT OR 64-BIT, DEPENDING ON

BUILD TIME SETTINGS).

If this requirement is not met, different bad things can happen.

For instance, Sphinx can crash with an internal assertion

while indexing; or produce strange results when searching

due to conflicting IDs. Also, a 1000-pound gorilla might

eventually come out of your display and start throwing barrels

at you. You’ve been warned.

While this is not a unsolvable problem, it does require changes to the

source data. In our case, an unsigned auto-incrementing integer offers

more than enough room, but would add another index to the system.

This would increase the RAM usage when dealing with large numbers

74 CHAPTER 3. BACK-END AND SEARCH

of documents and require additional CPU cycles on every insert to the

database.

3.6.1.3 Search queries

When using Sphinx in connection with MySQL, Sphinx offers an SQL

dialect called "SphinxQL" that allows filtering out certain subsets of the

collected data. The official manual describes it like this:

SphinxQL is our SQL dialect that exposes all of the search

daemon functionality using a standard SQL syntax with a

few Sphinx-specific extensions. Everything available via the

SphinxAPI is also available SphinxQL but not vice versa; for

instance, writes into RT indexes are only available via SphinxQL.

Especially for simple queries, there is basically no difference between

SQL and SphinxQL. A simple example from the manual looks like this:

SELECT *, AVG(price) AS avgprice, COUNT(DISTINCT storeid)

FROM products

WHERE MATCH(’ipod’)

GROUP BY vendorid

Another alternative is the use of the query API from Ruby using one of the

available libraries. Thinking Sphinx86 allows the usage of Active Record

with Sphinx, and Riddle87 provides ruby-wrapped raw access to Sphinx.

Riddle also offers a nice way of updating data that is currently in the

sphinx search index.

3.6.1.4 Conclusion for the project

The performance numbers and features would be a good fit for the

project. The need for an extra integer ID in the SQL schema is suboptimal,

but still an acceptable modification. A downside of using Sphinx for the

project is the missing expertise inside of Acquia compared to Solr.
86http://freelancing-god.github.com/ts/en/
87http://github.com/freelancing-god/riddle

http://freelancing-god.github.com/ts/en/
http://github.com/freelancing-god/riddle

3.6. EXTERNAL SEARCH 75

3.6.2 Solr

3.6.2.1 Overview

Apache Solr is a Java-based search platform built on top of the Apache

Lucene library. It provides a REST interface which allows interaction for

both querying and application specific tasks such as reindexing.

3.6.2.2 Data input

There are several ways of getting data from external sources into Solr.

The one offering the broadest support is probably Solr’s ability to accept

XML over a restful HTTP connection. In the default configuration, the

interface listens on port 8983 and expects XML in the following format:

<add>

<doc>

<field name="id">example.com</field>

<field name="cms_name">drupal</field>

<field name="cms_version">7.0</field>

</doc>

</add>

While this interface can be accessed from basically any language that has

an HTTP library, Solr offers a second possibility that is more suited to

the crawlers infrastructure: a JDBC import. By specifying the connection

to the database and a mapping to the current data-schema, Solr will

import the data directly from the database. This results in faster imports.

Solr also allows incremental "delta" imports. Solr saves the timestamp

of the last import and can pass this value to a custom query. This

allows Solr to only add records to the index that changed since the last

update. This way, indexation can happen at night using a cronjob and the

direct communication between storage back-end and search back-end

keeps down the complexity. It does, however, make it harder to switch

technologies in case there are unforeseen problems with Solr.

76 CHAPTER 3. BACK-END AND SEARCH

A big advantage is that Solr can map document input to its internal

data schema. This allows us to keep our back-end data unchanged and

just use SQL and the schema mapping mechanism to determine which

parts of the data have to be searchable, and which parts of the data

should actually be saved in the index.

3.6.2.3 Search queries

In general, Solr supports multiple query syntaxes through its query

parser plugin framework. The default syntax is the Lucene query parser

syntax88 which is a simple text string that can be enhanced with boolean

operators, and even allows boosting certain search terms in priority and

wildcards, among other features.

The data can be accessed using Solr’s HTTP interface. A more convenient

way for accessing the data from Ruby is the rsolr-ext89 library that wraps

the communication in ruby-esque datatypes. A sample-query using the

rsolr-ext library and employing a variety of features such as faceting and

range queries looks like this:

require ’rsolr-ext’

solr = RSolr.connect

solr_params = {

:page=>2,

:per_page=>10,

:phrases=>{:name=>’This is a phrase’},

:filters=>[’test’, {:price=>(1..10)}],

:phrase_filters=>{:manu=>[’Apple’]},

:queries=>’ipod’,

:facets=>{:fields=>[’cat’, ’blah’]},

:echoParams => ’EXPLICIT’

}

88http://lucene.apache.org/java/2_9_1/queryparsersyntax.html
89http://github.com/mwmitchell/rsolr-ext

http://lucene.apache.org/java/2_9_1/queryparsersyntax.html
http://github.com/mwmitchell/rsolr-ext

3.6. EXTERNAL SEARCH 77

response = rsolr.find solr_params

The rsolr gem also provides the ability to add or update data currently in

Solr.

3.6.2.4 Conclusion for the project

The huge feature-set of Solr makes it a good choice for the project. Since

there is a lot of internal knowledge about Solr available at Acquia, it

seems to be the best solution for the problem at this point in time. While

the indexation is slower than in sphinx, this is not a problem since we do

not target real time search of newly analysed domains.

3.6.3 Elasticsearch

3.6.3.1 Overview

Elastic Search is a fairly new project that started in early 2010. Its main

goal is to provide an automatically sharded search solution based on

the Lucene project (the same is true for Solr, see section 3.6.2). A pretty

accurate differentiation from the Solr project has been given by the

author himself when he was asked "How is Elastic Search different from

Solr?" in an interview posted on the Sematext blog90:

To be honest, I never used Solr. When I was looking around for

current distributed search solutions, I took a brief look at Solr

distributed model, and was shocked that this is what people

need to deal with in order to build a scalable search solution

(that was 7 months ago, so maybe things have changed).

While looking at Solr distributed model I also noticed the very

problematic “REST” API it exposes. I am a strong believer

in having the product talk the domain model, and not the

other way around. ElasticSearch is very much a domain

driven search engine, and I explain it more here: http://www.

90http://blog.sematext.com/2010/05/03/elastic-search-distributed-lucene/

http://www.elasticsearch.com/blog/2010/02/12/yourdatayoursearch.html
http://www.elasticsearch.com/blog/2010/02/12/yourdatayoursearch.html
http://blog.sematext.com/2010/05/03/elastic-search-distributed-lucene/
http://www.elasticsearch.com/blog/2010/02/12/yourdatayoursearch.html

78 CHAPTER 3. BACK-END AND SEARCH

elasticsearch.com/blog/2010/02/12/yourdatayoursearch.html.

You will find this attitude throughout elasticsearch APIs.

3.6.3.2 Data input

Elasticsearch currently offers three different ways for a developer to add

data to the index:

1. A REST API

2. A Java API

3. A groovy API

Since our project is neither Java nor Groovy based, the most interesting

interface for the project’s specific use-case is the REST API. The project

offers both interaction with the index (indexation), and the service itself

(administration). The usage is refreshingly simple and consists of an

API that expects JSON encoded parameters, and can be accessed using

either HTTP or the memcached protocol. The returned results are also

encoded in JSON. The interaction is simple and straight forward as can

be seen by the REST API overview:

http://www.elasticsearch.com/blog/2010/02/12/yourdatayoursearch.html
http://www.elasticsearch.com/blog/2010/02/12/yourdatayoursearch.html

3.6. EXTERNAL SEARCH 79

API Descripton

index Index a typed JSON document into a specific

index and make it searchable.

delete Delete a typed JSON document from a specific

index based on its id.

get Get a typed JSON document from an index based

on its id.

search Execute a search query against one or more

indices and get back search hits.

count Execute a query against one or more indices and

get hits count.

create_index Creates an index with optional settings.

delete_index Deletes an index.

put_mapping Register specific mapping definition for a

specific type against one or more indices.

3.6.3.3 Search queries

Elastic Search offers a query DSL91 that is accessible over the REST

interface. A search for all sites running on the Drupal CMS would consist

of sending this JSON string to the REST interface:

{

"term" : { "cms_name" : "drupal" }

}

There are two ruby libraries (rubberband92 and elasticsearch93) that allow

easy ruby-like access to the search interface.

3.6.3.4 Conclusion for the project

Elastic search is a very promising project that targets deployment on

multiple machines. It would be a nice fit in combination with one of the
91http://www.elasticsearch.com/docs/elasticsearch/rest_api/query_dsl/
92http://github.com/grantr/rubberband
93http://github.com/adrpac/elasticsearch

http://www.elasticsearch.com/docs/elasticsearch/rest_api/query_dsl/
http://github.com/grantr/rubberband
http://github.com/adrpac/elasticsearch

80 CHAPTER 3. BACK-END AND SEARCH

dynamo based systems (Riak or Cassandra). Since it is not specifically

designed for single-node operation and still early in development, more

mature projects like Solr seem to be a better solution for our problem.

3.7 Work Queues

While there are a lot of queuing and messaging systems available on the

market, the main focus of the project was on systems that allow an easy

configuration, and do not add a lot of operations overhead. While the

discussed systems do not provide complex clustering or replication, they

have more than enough throughput, and most interestingly, are almost

configuration free. For bigger projects that do not have a big focus on

simplicity and a higher degree of parallelization across a large number

of servers, alternative job distribution systems like Gearman94 or even

Hadoop95 might be worth an evaluation.

3.7.1 Redis

3.7.1.1 Features

Redis is not strictly speaking a work queue; it is a network-accessible

data-structure server. Using a Key-Value interface, a developer can work

with strings, lists, sets, and ordered sets. Each specific type features a

large array of atomic operations. The "list" type, for example, is basically

a stack that allows the developer to push to and pop values from it.

Since both of the operations can operate in a LIFO or FIFO manner, it

allows the usage of a Redis list as a simple queue. Even more complex

operations such as "RPOPLPUSH" exist, allowing to "Return and remove

(atomically) the last element of the source List stored at srckey and push

the same element to the destination List stored at dstkey"96. Using an

ordered sets type, this simple list can be turned into a persistent queue

94http://gearman.org/
95http://hadoop.apache.org/
96http://code.google.com/p/redis/wiki/CommandReference

http://gearman.org/
http://hadoop.apache.org/
http://code.google.com/p/redis/wiki/CommandReference

3.7. WORK QUEUES 81

with priories.

When it comes to performance, Redis is one of the fastest data-stores

available. Even with a small EC2 instance (1,7 GB RAM, 1 EC2 Compute

unit, 32 bit), the numbers gathered by the c-based Redis-benchmark tool

are impressive:

SET: 9363 requests per second

GET: 8940 requests per second

INCR: 8547 requests per second

LPUSH: 9141 requests per second

LPOP: 8713 requests per second

It has to be noted, however, that network latency and not using C might

slow down individual clients. Redis is also really impressive when it

comes to parallel access. Jak Sprats ran a series of benchmarks97 and

showed that the performance degradation with 27,000 parallel accessing

clients is minimal when compared to just 10 parallel clients. His results

in Figure 3.7 depict the amount of parallel connections on the horizontal

axis and the GET requests per second on the vertical axis.

Libraries to interact with Redis exist for most languages (Java, Erlang,

Scala, Ruby, Lua, Perl, Python, Actionscript, PHP, Haskel and many

more98). For the interaction with the asynchronous Eventmachine library

in Ruby, em-redis99 provides library support. A disadvantage of using

Redis as a queue is that it does not provide a native "reserve" functionality.

Most specialized queueing systems allow clients to "reserve" a job. This

results in the job not being available for other clients, but still staying in

the queue. This can usually be coupled with a timeout, after which the

job will be reservable again by other clients. This helps with retaining

the job data in the case of a client crash.
97http://groups.google.com/group/redis-db/browse_thread/thread/

1fc6fd6c8937dda7
98http://code.google.com/p/redis/wiki/SupportedLanguages
99http://github.com/madsimian/em-redis

http://groups.google.com/group/redis-db/browse_thread/thread/1fc6fd6c8937dda7
http://groups.google.com/group/redis-db/browse_thread/thread/1fc6fd6c8937dda7
http://code.google.com/p/redis/wiki/SupportedLanguages
http://github.com/madsimian/em-redis

82 CHAPTER 3. BACK-END AND SEARCH

Figure 3.7: Redis parallel access

When using blocking push and pop commands ("BLPOP", "BRPOP"),

it is a good idea to open up a second connection to Redis which is only

used for writing. Especially when working in a threaded environment,

BLPOP on an empty list will lock the connection until somebody pushes

a value to the list. The problem when only using a single connection is

that you cannot push a value because of BLPOP’s lock.

3.7.2 Conclusion for the project

Redis seems a great fit for usage in the project. While it lacks certain

optional functionality, if used it in other parts of the system (caching for

example) it would help to reduce the amount of infrastructure, while still

providing great performance.

3.7. WORK QUEUES 83

3.7.3 Beanstalkd

3.7.3.1 Features

Beanstalkd was, according to the official website100, originally designed

for "reducing the latency of page views in high-volume web applications

by running time-consuming tasks asynchronously". Ilya Grigorik describes

beanstalk in his blog post "scalable work-queues with beanstalk"101 like

this:

A single instance of Beanstalk is perfectly capable of handling

thousands of jobs a second (or more, depending on your

job size) because it is an in-memory, event-driven system.

Powered by libevent under the hood, it requires zero setup

(launch and forget, ala memcached), optional log based persistence,

an easily parsed ASCII protocol, and a rich set of tools for job

management that go well beyond a simple FIFO work queue.

Beanstalkd offers internal priorities. By setting a priority variable (default:

65536) when adding a job to the queue, the user can decide how important

a certain job is. Higher priorities (higher numbers) will be picked up

and processed faster by workers requesting a job. In general, beanstalkd

offers several different states for jobs. Jobs will move between the following

states:

ready: job can be picked up by worker. When this will happen depends

on the job’s relative priority

reserved: the job is being worked on at the moment

delayed: A job in this state has been inserted with a delay. When this

time period is over, it will automatically switch over to the "ready"

state

100http://kr.github.com/beanstalkd/
101http://www.igvita.com/2010/05/20/scalable-work-queues-with-beanstalk/

http://kr.github.com/beanstalkd/
http://www.igvita.com/2010/05/20/scalable-work-queues-with-beanstalk/

84 CHAPTER 3. BACK-END AND SEARCH

burried: This state is usually for jobs that crashed while being processed.

Worker clients can mark the job as burried if the developer wants

to check the cause of the crash later in time.

When interacting with beanstalkd from ruby, beanstalkd’s ruby client

("beanstalk-client"102) still lacks a bit when it comes to a multi-threaded

environment as the projects current readme file103 will tell you:

If you want to use this library from multiple concurrent threads,

you should synchronize access to the connection. This library

does no internal synchronization.

While synchronizing access manually does work, it adds lots of extra,

unnecessary code to the project. Interaction with the asynchronous

Eventmachine library from Ruby can be achieved using em-jack104. Other

client libraries are available for most major programming languages105.

Performance wise, beanstalkd is comparable to Redis as it can deal with

several thousand job operations per second.

3.7.4 Conclusion for the project

While Beanstalk is a great and simple queueing system, it does not have

a lot of advantages over Redis in our specific use-case. The ability to

monitor crashed jobs is a nice feature, but it does not weigh heavier than

adding another piece of infrastructure to our system.

102http://beanstalk.rubyforge.org/
103http://github.com/kr/beanstalk-client-ruby/blob/master/README.rdoc
104http://github.com/dj2/em-jack
105http://wiki.github.com/kr/beanstalkd/client-libraries

http://beanstalk.rubyforge.org/
http://github.com/kr/beanstalk-client-ruby/blob/master/README.rdoc
http://github.com/dj2/em-jack
http://wiki.github.com/kr/beanstalkd/client-libraries

Chapter 4

Crawler

4.1 System architecture

This section will describe the architecture of the crawler at the end of the

project. This architecture is the result of the infrastructure evaluation

documented in the other sections of this thesis.

4.1.1 Components

The architecture consists of 4 main components:

1. Redis

2. MySQL

3. Solr

4. Ruby scripts

A graphical overview of the connections between the several components

can be seen in figure 4.1. The main components fulfil the following tasks:

Redis is a distributed data structure server who’s main task is to function

as a queueing system and write through cache. Instead of writing

results directly to MySQL, the data is written to a list data structure

inside of Redis. This happens using an Eventmachine-based (asynchronous)

85

86 CHAPTER 4. CRAWLER

library. A second Ruby application is continuously pushing the data

from the Redis insertion queue to MySQL. Redis also works as a

cache for all detected links. Instead of querying MySQL every time

we hit a new link, and thus stop the crawling process, we push the

links into a Redis list. Another process is continuously getting the

links from the queue, checking their existence in the database or

a local cache, and adding newly detected domains to the crawl

queue.

MySQL is mainly used as a persistent back-end storage. The InnoDB

storage engine allows concurrent access to the database. Keeping

MySQL on EBS allows a simple backup process using file system

snapshots. Since MySQL does not support partial indexes (see

3.5.3.4), indexation of all of the available columns is simply not

possible without needing large amounts of RAM. A switch to PostgreSQL

might help with this situation, but the time constraints and the

missing expertise concerning Postgres sadly did not make a further

evaluation possible. Another reason to chose MySQL as a back-end

is the seamless interaction with the Solr search service. MySQL can

be natively accessed by Solr and incremental data imports work

without the need of custom scripting.

Solr allows to search the collected data. In our case, it even stores

a copy of the data itself to help separate the storage back-end

(MySQL) from the web interface. Its faceting features allow the

easy generation of statistical data like the CMS distribution in the

Alexa top 1 Million sites. It also supports incremental imports by

using a timestamp in the SQL data that updates whenever a row

is changed. This way, a simple cron job can launch a daily import

of new data. Since it currently saves all of the indexed data, it can

function as the only source of information for the web interface.

Ruby scripts function as glue code between all of the systems and contain

the application logic. They collect the data (crawling), insert it into

4.1. SYSTEM ARCHITECTURE 87

the database, and manage the crawling queue. The internal web

interface is also powered by a minimalist ruby web framework

called Sinatra1 for now. Sooner or later, this will be probably be

transferred to a Drupal powered web page that accesses Solr. The

HTTP requests during the crawling-phase are powered by em-http-request2,

an asynchronous HTTP library based on the asynchronous Ruby

I/O framework Eventmachine3.

When it comes to the crawling and link collection process itself, a single

step per domain seems to be beneficial compared to splitting the different

steps (analytical processing, link extraction, etc.) into several independent

processes. Having a completely decoupled system with a lot of workers

has a certain architectural charm to it, but passing the data between

the several processes results in a big network overhead, while saving all

of the data into a temporary storage results in a lot more load on the

storage back-end.

In the end, the best solution seemed to keep all of the application logic

that does not need to access any additional external network data (e.g.

fingerprinting or geo-locating) in one process and just write the results

of this step into a fast Redis cache for further insertion into permanent

Storage. This also gives us a central place to filter or introspect data

running through the system, without the need to modify any application

code. It also gives us the advantage of being able to write all of the data

to the database in one big write, compared to incrementally filling up a

record in several small updates.

1http://www.sinatrarb.com
2http://github.com/igrigorik/em-http-request
3http://rubyeventmachine.com/

http://www.sinatrarb.com
http://github.com/igrigorik/em-http-request
http://rubyeventmachine.com/

88 CHAPTER 4. CRAWLER

Figure 4.1: Architecture overview

4.1.2 Data schema

The data schema is kept in denormalized form. While adding degrees of

normalization to it might help with space usage, keeping it denormalized

4.1. SYSTEM ARCHITECTURE 89

helps us to easily switch between back-end storages, keeps queries

simple, and allows us to retrieve humanly readable data easily. It also

means that updates and deletions only operate on a single document

in a single location, and do not need to deal with several tables. It also

allows us to keep the amount of indexes in RAM to a minimum. For every

extra table, we would need another primary key which in turn would

need another B+-Tree with millions of entries.

A noteworthy feature of our schema is the way that IP addresses are

handled. They are converted and saved as integer values. Although

MySQL offers the inet_aton()4 function to natively convert IP addresses

into a 4 byte integer, using the "IPAddr" class that is part of the Ruby

core libraries and the .to_i() method to convert the address into an

integer representation seems like a more portable solution without any

performance penalties. While arrays are an optional part of the SQL99

standard and implemented by e.g. Oracle5 and PostgreSQL6, MySQL

does not currently support them. This is why we had to serialize an array

of CMS modules (also known as "plugins") into a single string. Using the

pipe character ("|") to delimit the modules, gives us an easy way to save

and recall them without too much overhead.

4http://dev.mysql.com/doc/refman/5.0/en/miscellaneous-functions.html#
function_inet-aton

5http://download.oracle.com/docs/cd/B10501_01/appdev.920/a96624/05_
colls.htm

6http://www.postgresql.org/docs/8.0/interactive/arrays.html

http://dev.mysql.com/doc/refman/5.0/en/miscellaneous-functions.html#function_inet-aton
http://dev.mysql.com/doc/refman/5.0/en/miscellaneous-functions.html#function_inet-aton
http://download.oracle.com/docs/cd/B10501_01/appdev.920/a96624/05_colls.htm
http://download.oracle.com/docs/cd/B10501_01/appdev.920/a96624/05_colls.htm
http://www.postgresql.org/docs/8.0/interactive/arrays.html

90 CHAPTER 4. CRAWLER

key type note example data

domain varchar(255) primary key acquia.com

ts timestamp indexed and

automatically

updated on

document

change. Used

by Solr delta

indexation

2010-09-06

11:11:15

domain_suffix varchar(32) com

domain_root varchar(255) acquia

domain_subdomain varchar(255) www

cms_name varchar(100) drupal

websrv_name varchar(100) apache

ip int(25) saving as

integer saves

space

1264949760

country varchar(25) country code us

incoming_link_count int(20) unsigned 180225

response_time smallint(20) unsigned 1501

provider varchar(50) according to ip

range

amazon

cms_version varchar(15) n/a

cms_modules text "|"-seperated jstools|wiki|[...]

alexa_rank int(10) unsigned 16119

industry varchar(255) software &

internet

subindustry varchar(255) e-commerce

and internet

businesses

last_crawl timestamp to determine

necessity for

recrawling

2010-08-28

11:22:13

4.2. PROBLEMS 91

4.2 Problems

4.2.1 HTTP redirects and standards

One of the interesting things to discover while writing a crawler was how

most HTTP redirects that can be encountered in the wild do not conform

to the standards. The main problem is the values that can usually be

found in the "Location" field of the HTTP redirect header.

The W3C RFC 2616[7] is pretty clear about the fact that the location

field should have an absolute URI. Here is a direct quote from the

matching part of the document:

4.30 Location

The Location response-header field is used to redirect the

recipient to a location other than the Request-URI for completion

of the request or identification of a new resource. For 201

(Created) responses, the Location is that of the new resource

which was created by the request. For 3xx responses, the

location SHOULD indicate the server’s preferred URI for automatic

redirection to the resource. The field value consists of a single

absolute URI.

Location = "Location" ":" absoluteURI

An example is:

Location: http://www.w3.org/pub/WWW/People.html

Instead, here is what you tend to find in the wild:

• a file name (index_new.php)

• an absolute path (/new/site.htm)

• a relative path (cms/index.php)

• backslashes, preferably on IIS Webservers (http:example.org)

• local paths (e:/mmbm-web/404b.htm)

index_new.php
/new/site.htm
cms/index.php
http:example.org
e:/mmbm-web/404b.htm

92 CHAPTER 4. CRAWLER

To be sure to properly identify sites even if their redirect is broken, it

is beneficial to implement a cleanup method. This method can take the

domain and the received redirect string as an input and return a proper

URI.

4.2.2 wildcard subdomains and spam

Another thing that one has to pay attention to is the possibility of domains

to use a Wildcard DNS record. This allows a server to answer requests

for all possible sub-domains. Details can be found in section 4.3.3 of

RFC 1034 [8]. One of the big problems with this is keeping down the

amount of time that we use on a single domain. This can especially

be a problem for big sites like tumblr or deviantART that give each of

their members a sub-domain. While it would be possible to crawl all

possible sub-domains, crawling the millions of tumblr or deviantART

sub-domains does not lead to any new information, but only takes up a

lot of time. We also have to pay attention to the frequency with which we

crawl the domains. Hammering on the sub-domains of a single provider

will usually trigger some rate control mechanism that either blocks our

IP or results in things like the server answering with a HTTP 503 status

code ("Service Unavailable").

Another big problem are domains that use a wildcard cname entry and

generate hundreds of links. These links can be found as spam in forums,

blog comments, or just on a simple HTML page. These are probably

used in order to fake importance in search engines. A solution to this

is to keep a whitelist of allowed subdomains ("www.", "blog.", "shop.",

"web.", "cms.", etc.) and a whitelist of top level domains that usually

do not serve up wildcard subdomains (e.g. ".edu", ".gov", ".museum",

".mil", ".int"). One interesting thing: while .pro domains are limited to a

certain group of people7, whitelisting this toplevel domain would also

whitelist services like dyndns.pro. The problem is that dyndns.pro is

7http://www.registry.pro/pro/eligibility.shtml

http://www.registry.pro/pro/eligibility.shtml

4.2. PROBLEMS 93

a service that allows people to register arbitrary custom sub-domains.

During the operation of the crawler, we encountered a network of spam

sites utilizing thousands of dyndns.pro sub-domains.

4.2.3 www cname records

Another big problem is that a lot of domains do not actually serve

their root domain, but only their "www." sub-domain. This means that

when getting a link to example.com, doing a HTTP GET request to that

site could time out or result in an error message. What a lot of web

browsers will do in this case is simply check if the "www.example.com"

sub-domain answers the request successfully. This means that in case

a domain does not answer, the crawler should also check the matching

www. sub-domain. This is especially expensive in the case of a synchronous

DNS request in combination with a DNS server that takes long to answer.

In this case, a thread will be blocked for twice as long as the timeout value

just as it waits for a DNS answer. An alternative would be to pre-resolve

the domains in the queue using an asynchronous DNS library and add

the IP information to the queue before the domain actually reaches the

http library. The other alternative is using asynchronous I/O for both

the HTTP and DNS request. While this adds a bit of complexity to the

project, the performance gains can be substantial.

4.2.4 top level domain detection

Another interesting quirk when dealing with the Internet is the fact

that there is no algorithmic way of determining which part of a URL

represents the toplevel domain. For a lot of domains it is easily recognizable.

For instance the usual country toplevel domains:

• example.de

• example.fr

• example.us

94 CHAPTER 4. CRAWLER

Some of the more interesting cases are domains like these, where everything

behind the "example." is actually a valid domain suffix:

• example.research.aero

• example.gv.at

• example.kiev.ua

• example.edu.vn

• example.pvt.k12.wy.us

Detecting the public suffix of a domain is necessary to be able to block

generated subdomains (some-generated-domain.spam.com) while still

allowing valid ones (university.edu.vn). Sadly, there is no algorithmic

approach to detecting which part of an URL is an actual top level domain

and which part is a sub-domain. Luckily, the Mozilla Foundation has a

project called "The public suffix list"8 that tries to categorize all public

suffixes that are available on the web. Ruby libraries such as Domainatrix9

or "Public suffix service"10 are able to parse the list and analyse domains

according to the rules of the list.

4.2.5 Balancing parallelism

Another interesting performance problem is the balancing of either

crawling-threads or asynchronous i/o requests over time. In theory, we

could just experiment with a different number of threads and find the

one that utilizes our server’s resources to a maximum without overloading

it. The major problem with this approach is the differences in response

times between different groups of domains. If we happen to currently

crawl several sites in China, the I/O wait times will be much larger

compared to sites hosted inside of the United States. Larger waiting

times also means less CPU utilization. If we are running with a fixed
8http://publicsuffix.org/
9http://github.com/pauldix/domainatrix

10http://www.simonecarletti.com/code/public_suffix_service

http://publicsuffix.org/
http://github.com/pauldix/domainatrix
http://www.simonecarletti.com/code/public_suffix_service

4.2. PROBLEMS 95

amount of parallel threads, the server will either be underutilized in

the case of the Chinese sites or overutilized in the case of the websites

hosted in the United States. A seemingly easy solution would be to

add additional processes once we drop under a certain throughput per

second. The problem is that other processes running on the server (e.g.

Solr indexation) could require a share of the CPU, and thus limit the

throughput at this moment. Adding additional threads would kill server

performance in this case.

Another point to pay attention to is the load that increasing the number

of file descriptors and context switches adds to the system. This keeps the

system from scaling linearly. The current practical solution is to simply

find a good fixed amount of parallel operations that keep the throughput

at a satisfactory level even when going through a large number of quickly

answering target domains. While this is probably still improvable, the

insertion of the collected data into the MySQL back-end currently seems

to be the bottleneck, so there is no need for immediate action on this part.

An interesting approach for future improvements might be monitoring

the time each request takes and act accordingly. For regular requests,

launch a thread to replace the current one after its termination.

For slow requests, start an additional thread.

For very fast requests, let the thread terminate without launching a new

one.

4.2.6 File descriptors

Especially when working with asynchronous I/O, the amount of available

file descriptors for the process is of great importance. File descriptors are

(among other things) used to track the availability of socket data in Unix

like systems. Limiting the amount of file descriptors effectively limits the

possible concurrency of the application. Especially when developing on

Mac OS X, the default limit of only 256 file descriptors for user processes

starts to be a problem quickly. Hitting this limit can cause the application

96 CHAPTER 4. CRAWLER

to break at seemingly random points during execution. Setting the file

descriptor limit to a higher value using the "ulimit" command before

executing the application solves this problem. Another approach is

to limit the amount of file descriptors that will be allocated by the

framework. In Eventmachine, the set_descriptor_table_size() method

can put an upper limit on the amount of descriptors. This, however,

could harm performance and throughput.

4.3 Link collection

4.3.1 RegExp vs HTML Parsing

When it comes to extracting hyperlinks from an HTML document, there

are basically two approaches:

• Use an HTML/XML parser

• Use regular expressions

Using an HTML parser and focusing on the "href" attribute of HTML

<a> elements will only extract actual links, not domain names that are in

text areas. Using a regular expression will usually extract anything that

looks like a link, regardless if it is actually in the right position or not.

Problems with html parsers might arise when it comes to HTML that is

not well-formed. An example of a regular expression to detect links to

external sites (in our case: links that do not start with a slash) inside of a

href attribute looks like this:

/href.?=.?["’]([^\/].*?)["’]/i

A simple benchmark comparing two c-based html parsers for Ruby

(Nokogiri11 and Hpricot12), both using CSS and XPATH selectors to the

previously mentioned regular expression, gives the following results

when parsing the HTML of the reddit.com frontpage 250 times:
11http://nokogiri.org/
12http://wiki.github.com/hpricot/hpricot/

http://nokogiri.org/
http://wiki.github.com/hpricot/hpricot/

4.3. LINK COLLECTION 97

Method Duration in s

regexp 0.352365

hpricot (xpath) 3.808862

hpricot (xpath, no href) 7.473591

hpricot (css) 5.392564

nokogiri (xpath) 4.532942

nokogiri (xpath, no href) 4.223752

nokogiri (css) 4.958362

In our case, "no href" means that we were only looking for a elements

("//a") and not for a elements with href ("//a[@href]"). The extraction

of the link is happening after we collected the results. Since the regular

expression offers 10 times faster performance in Ruby, using it seems to

be the best solution for the problem. Just in case that Ruby encounters

strange encodings, a fallback leads to a second method using the Nokogiri

HTML/XML parser.

4.3.2 Adaptive crawl depth

After processing a few million domains, collecting new ones becomes

a problem. Websites tend to link only in a certain "circle" of similar

sites. For example, technology sites will usually link to other technology

websites, French domains tend to link to other French domains and so

on. Some examples of previous work dealing with this are Cho, J.’s and

Garcia-Molina’s "Efficient Crawling Through URL Ordering"[24], Marc

Najork and Janet L. Wiener’s "Breadth-first crawling yields high-quality

pages"[25], Baeza-Yates et al. with "Crawling a Country: Better Strategies

than Breadth-First for Web Page Ordering"[26] and Daneshpajouh et al.

with "A Fast Community Based Algorihm for Generating Crawler Seeds

Set"[27].

Our initial strategy for this problem was adjusting the depth of a default

crawl. Instead of just extracting links from the root of the domain ("/"),

as soon as the domains in queue dropped below a certain number,

98 CHAPTER 4. CRAWLER

the depth of the crawl increased. Visiting other links allowed us to

gather more domains while still keeping a good performance when

we have enough new domains to crawl in queue. This behaviour was

discontinued with the introduction of other mechanisms like zone files

(see 4.3.6) and seed sites(see 4.3.4) in favour of a cleaner and simpler

code base. While the approach is an elegant solution to the problem that

offers a trade-off between domain throughput and link-collection, it was

a classical case of "reinventing the wheel". Just parsing links to external

domains from the root of a website still allows us to gather enough new

links to detect domains that are not part of the initial seed of domains,

while keeping the code simple and the throughput high.

4.3.3 Twitter

Another good source of links (especially new and popular domains) is

the micro-blogging service Twitter. Twitter offers a streaming API that

delivers live JSON data from the service directly to the application. There

are several different ways to gather new links. The most effective one

would probably be the "links" stream available for special applications at

http://stream.twitter.com/1/statuses/links.json. The official description

of this resource is as follows:

Returns all statuses containing http: and https:. The links

stream is not a generally available resource. Few applications

require this level of access. Creative use of a combination of

other resources and various access levels can satisfy nearly

every application use case.

Twitter had an amount of over 3000 tweets per second with an average of

750 tweets per second in June of 2010, according to the official company

blog13. Even if only 5% of tweets have a link in them, that would mean

that we would have to deal with over 160 links per second, which would

require some caching and deduplication mechanisms to be able to

13http://blog.twitter.com/2010/06/another-big-record-part-deux.html

http://stream.twitter.com/1/statuses/links.json
http://blog.twitter.com/2010/06/another-big-record-part-deux.html

4.3. LINK COLLECTION 99

keep the impact on the back-end minimal. This is especially true if

we consider the amount of time it takes to resolve all of the shortened

URLs that are usually used on twitter. Services like bit.ly, TinyURL or is.gd

allow users to post longer links on the character limited micro-blogging

service. These can be resolved using HTTP head requests and checking

the "location" field in the resulting HTTP redirect as can be seen in this

example:

$ curl -I http://bit.ly/9vGKyw

HTTP/1.1 301 Moved

Server: nginx/0.7.42

[...]

Location: http://blog.marc-seeger.de

An easier alternative to the "full" stream is the usage of twitters regular

non-streaming REST API. A simple request to http://search.twitter.

com/search.json?q=blog+filter:links&result_type=recent is able to

return all tweets that include the word "blog" as well as an http link.

Using targeted searches like this, we are able to filter out an interesting

subset of results without having to constantly work through the complete

twitter timeline. This also allows us to include twitter as just another

seed site.

4.3.4 Seed sites

Besides the previously mentioned service Twitter, there are a handful

of other interesting websites that specialize in collecting links, while

also providing a convenient free API. Reddit14 and Delicious15 are sites

that specialize in helping their users collect links to interesting external

sites. While Reddit has a big community aspect with comments and

specific subsections, Delicious is more focused on providing a tagging

solution for linked content. Both of the services offer a REST based JSON

14http://www.reddit.com/
15http://www.delicious.com/

http://search.twitter.com/search.json?q=blog+filter:links&result_type=recent
http://search.twitter.com/search.json?q=blog+filter:links&result_type=recent
http://www.reddit.com/
http://www.delicious.com/

100 CHAPTER 4. CRAWLER

API which we can use to automatically extract newly posted links from

both services. While Delicious offers us a broader variety, Reddit seems

to focus on high-priority websites. Both sites offer developer-friendly

terms of service that allow easy access to the provided data within certain

limitations. The allowed request-frequency is well within the bounds of

being useful for this project.

4.3.5 DMOZ and Wikipedia

An interesting collection of links to bootstrap the crawling process can

be found at the "DMOZ open directory project"16. DMOZ inherited

its name from "directory.mozilla.org", its original domain name. The

directory of domains provided by the project is available as a RDF dump

file which can easily be fed into the crawler using a little script file. A

comparable list of links to external domains is being provided by the

Mediawiki foundation17. The files with the pattern "*-externallinks.sql"

provide records of links to external domains found within the contents

of the Wikipedia.

4.3.6 Zone files

One of the most interesting alternatives to manually gathering links is

the usage of zone files. There are services (e.g. premiumdrops.com) that

provide copies of the zone files of major top-level domains. At the time

of writing, this includes the following TLDs:

16http://www.dmoz.org/
17http://download.wikimedia.org/dewiki/latest/

http://www.dmoz.org/
http://download.wikimedia.org/dewiki/latest/

4.4. DISTRIBUTION 101

TLD Domains

.com 89 million

.net 13 million

.org 8.4 million

.info 6.7 million

.biz 2 million

.us 1.6 million

Using these lists, it is possible to keep feeding new domains to the crawler

without paying too much attention to link-collection beyond the parsing

of the initial HTML page at the root of the domain, which has to be done

for fingerprinting purposes anyway.

4.3.7 Recrawling

Another interesting possibility of making sure that the crawler does not

run out of domains late in the crawling cycle is a certain recrawling of

domains. If the crawler hits a link to a domain that has last been crawled

more than a certain amount of time (e.g. 3 months) ago, just readding it

to the crawl queue will keep the information of popular sites relatively

current and also scrap some new domains from their front pages every

now and then. Something to consider is that checking for the date of a

domain’s last crawl adds an additional database request for every single

encountered link to an external domain. This additional load can be cut

down by using local caches or checking in only 50% of the cases.

4.4 Distribution

One of the most interesting problems to solve was the possibility of

distributing the crawling process to more than one machine. While the

system design targets high-performance more than horizontal scalability,

adding lightweight nodes that only deal with the crawling is a desired

feature to enhance throughput. When looking at figure 4.1, it can be seen

102 CHAPTER 4. CRAWLER

that the only connection to the back-end that the actual crawling process

needs is the access to the Redis process. Jobs are gathered from Redis

and results (information, discovered links) are immediately written back

to it. There is no further interaction for the crawling process with any

other back-end systems. This allows us to leave a "main" server to do

the heavy back-end work (MySQL, Solr) while letting the actual crawling

take part on machines that are much more lightweight when it comes to

RAM and storage space. The main component for the crawling machines

is available CPU power and network bandwidth. Since the final writes to

Redis can be done in an asynchronous fashion and do not require any

feedback, only getting the next job from the queue actually suffers from

the higher network latency. Besides this read penalty, the only other

thing suffering from a networked connection to Redis is the number

of file descriptors and kernel processes that do the asynchronous I/O.

Inserting the data, checking for the existence of links, and recrawling old

sites can all be put into small processes on the server hosting Redis itself.

This also helps keeping the actual storage back-end logic concentrated

in two processes; the link checker and the database inserter.

The actual long term storage back-end can be switched easily by just

replacing the specific code in these two modules. An additional change

would be required to insert the newly found data into Solr.

Chapter 5

Profiling-Methods

This section of the thesis describes a few commonly used means of

profiling/debugging several parts of the architecture that have been

helpful in the development of the project. There are a lot of tools

that come with a default Unix/Linux installation that allow for generic

profiling of running applications or third party services. The advantage

of analysing applications using these tools is that they allow one to gather

information about any running process. There is no need need for a

modified VM or special startup options of the application itself.

5.1 lsof

The ’lsof’ command lists information about files opened by processes. It

has to be noted that ’files’ also includes sockets in Unix. This helps us

gather information about network connections opened by an application.

This little tool can help, among other things, to detect memory leaks. I

noticed that the amount of RAM the crawler was using went up linearly

with the amount of domains it crawled. Just by doing a simple listing

of the files opened by the crawler process, I noticed that the file for the

geo-ip database had been loaded hundreds of times. This file is used to

determine the country a server is in. Seeing that this might be the cause

of the memory consumption allowed me to quickly look through the

103

104 CHAPTER 5. PROFILING-METHODS

sourcecode and notice that a reference to this file was leaked everytime

a domain was analysed. An example output of lsof looks like this:

$ lsof -p 230 | grep REG

texmaker 230 mseeger [...] /Applications/[...]/texmaker

texmaker 230 mseeger [...] /Applications/[...]/QtXml

texmaker 230 mseeger [...] /Applications/[...]/QtGui

texmaker 230 mseeger [...] /Applications/[...]/QtNetwork

texmaker 230 mseeger [...] /Applications/[...]/libqkrcodecs.dylib

texmaker 230 mseeger [...] /Applications/[...]/libqjpeg.dylib

texmaker 230 mseeger [...] /Applications/[...]/libqmng.dylib

5.2 dtrace and strace

Something similar to lsof can be done using dtrace (on OSX and Solaris)

or strace (on Linux). To list all applications that open files on disk, dtrace

allows to do a simple

#dtrace -n ’syscall::open*:entry { printf("%s %s",execname,copyinstr(arg0)); }’

[...]

0 18510 open:entry gedit-bin /Users/mseeger/Downloads/tyranttest.rb

0 18510 open:entry gedit-bin /Users/mseeger/Downloads/tyrant_search.rb

0 18510 open:entry gedit-bin /Users/mseeger/Downloads/Python.pdf

0 18510 open:entry gedit-bin /Users/mseeger/Downloads/keanu_sad.jpg

[...]

In this case, you can see the files being opened by the "gedit-bin" application.

In general, this can help to find unintended operations that should be

taken out of a loop. Dtrace even offers tools like "iotop" that show you

I/O utilization on a per process basis and many more. On OSX, Apple

ships an application called "instruments" which provides a convenient

user interface to dtrace and has many templates that help to debug

running processes and monitor specific system events. Strace also allows

to debug processes at runtime and to inspect their system calls. It is not

5.3. CURL 105

as powerful and scriptable as dtrace, but is supported on Linux and

works equally as well for simple tasks.

5.3 curl

When it comes to HTTP interaction, curl can be considered the Swiss

army knife of tools. It allows one to easily create GET, HEAD or POST

requests to arbitrary HTTP endpoints, and displays the results in an

easily readable text view. The response to a simple HEAD request looks

like this:

$ curl -I buytaert.net

HTTP/1.1 200 OK

Server: nginx/0.7.62

Content-Type: text/html; charset=utf-8

X-Powered-By: PHP/5.2.4-2ubuntu5.10

Expires: Sun, 19 Nov 1978 05:00:00 GMT

Cache-Control: store, no-cache, must-revalidate, post-check=0, pre-check=0

Set-Cookie: SESS1d728079e066e9a00738cd212ea24f73=08un8nf9slbudvasb09it86pa4; [...]

Last-Modified: Sun, 05 Sep 2010 12:16:48 GMT

Vary: Accept-Encoding

Date: Sun, 05 Sep 2010 12:16:49 GMT

X-Varnish: 819908815

Age: 0

Via: 1.1 varnish

Connection: keep-alive

X-Cache: MISS

Curl is especially helpful when trying to find unique parts of a CMS that

might be used to detect its usage in the fingerprinting stage of the crawler.

In this case, the Expires HTTP header is set to "Sun, 19 Nov 1978 05:00:00

GMT" which usually indicates that a website is running on the Drupal

CMS.

106 CHAPTER 5. PROFILING-METHODS

5.4 mtop

When using MySQL as a back-end, there are a lot of available profiling

tools that a developer can chose from. A simple tool allowing monitoring

of a running MySQL process, even on the server, is mtop1. It allows

looking at long-running queries, checking the cache hit ratios, and

counting the amount of queries per second the system is dealing with. If

development requires more than such a simplistic view, tools such as Jet

Profiler2 allow a more in-depth review of running queries compared to

mtop.

5.5 JRuby based profiling

As mentioned in the Ruby section2.2.4, JRuby allows Ruby code to run

on Hotspot, the Java Virtual Machine. Not only does it provide native

threads without a global interpreter lock, it does also allows the usage

of most of the Java Profiling tools. Charles "Headius" Nutter is a core

developer for the JRuby project and has provided several excellent blog-posts

that deal with the available tools and their usage with JRuby:

• "Browsing Memory the JRuby Way"3 gives an introduction to jmap

and jhat

• "Finding Leaks in Ruby Apps with Eclipse Memory Analyzer"4

introduces the Eclipse Memory Analyzer, a more interactive way of

finding memory leaks than the jmap/jhat combination

• "Browsing Memory with Ruby and Java Debug Interface"5 introduces

the Java Debug Interface that not only allows heap inspection,

1http://mtop.sourceforge.net/
2http://www.jetprofiler.com/
3http://blog.headius.com/2010/07/browsing-memory-jruby-way.html
4http://blog.headius.com/2010/07/finding-leaks-in-ruby-apps-with-eclipse.

html
5BrowsingMemorywithRubyandJavaDebugInterface

http://mtop.sourceforge.net/
http://www.jetprofiler.com/
http://blog.headius.com/2010/07/browsing-memory-jruby-way.html
http://blog.headius.com/2010/07/finding-leaks-in-ruby-apps-with-eclipse.html
http://blog.headius.com/2010/07/finding-leaks-in-ruby-apps-with-eclipse.html
Browsing Memory with Ruby and Java Debug Interface

5.5. JRUBY BASED PROFILING 107

but also allows installing breakpoints and single stepping through

running code.

Chapter 6

Fingerprinting

One of the main features of the project is the ability to detect the software

that powers a website in the background. This chapter will explain

the different ways to detect this software and go into details about the

gathering Drupal specific data (used modules and the Drupal release).

While working on this thesis, Patrick S. Thomas released a paper called

"Blind Elephant: Web application fingerprinting with static files"[12]

that also deals with this topic. I suggest to also read his paper which

focuses on version detection for different content management systems.

6.1 CMS detection

At the time of writing, the fingerprinting mechanism created for this

project is able to detect 80 different content management systems. The

interface used is pretty simple:

Input : HTML of the root (’/’) page + HTTP Headers

Output : true or false

The main way of detecting a CMS is checking for specific things the

generated pages include such as:

109

110 CHAPTER 6. FINGERPRINTING

6.1.1 The Generator meta tag

Berners-Lee and Connolly described the meta element in RFC 1866

("Hypertext Markup Language - 2.0")[13] as follows:

The <META> element is an extensible container for use in

identifying specialized document meta-information.

The "generator" meta tag is used to give information about which application

created the HTML code on the page. While this tag can be removed

without any problems, in the large majority of cases, it exists in the

default installation state of a content management system. It can help

us to determine the CMS and sometimes even its specific version. This

is a sample from a default installation of the Wordpress blogging engine:

<meta name="generator" content="WordPress 2.9.2" />

While security through obscurity is not a proper way to keep an application

safe, it might be a good idea to remove this tag just in case a vulnerability

of a certain version of the CMS would make it easily detectable as a

possible target.

6.1.2 Included files

Since the upcoming of the term "AJAX", most bigger content management

systems use Javascript to allow their users to edit forms or interact with

the website without reloading the complete page. For this, external

Javascript files are usually required. In the case of Drupal, a file called

"drupal.js" is included using the script tag:

<script type="text/javascript" src="/misc/drupal.js?3"></script>

Please pay attention to the problems section (6.1.9) of this chapter for

further comments on this.

6.1. CMS DETECTION 111

6.1.3 Javascript variables

After a javascript library such as jQuery has been loaded, it is sometimes

necessary to set certain CMS specific parameters. In the case of Drupal,

for example, it is often the case that the HTML code includes this call:

<!--//--><![CDATA[//><!--

jQuery.extend(Drupal.settings, {"basePath":"\/","googleanalytics":

{"trackOutgoing":1,"trackMailto":1,"trackDownload":1,

"trackDownloadExtensions":"7z|aac|avi|js|[...]|xml|zip"}});

//--><!]]>

6.1.4 Comments

Another way of a content management system to mark created pages is

by inserting an HTML comment inside the page source. A nice example

of this behaviour is the Kajona3 CMS which features this text:

<!--

Website powered by Kajona Open Source Content Management Framework

For more information about Kajona see http://www.kajona.de

-->

And in the case of TYPO3, this comment can often be found:

<!--

This website is powered by TYPO3 - inspiring people to share!

TYPO3 is a free open source Content Management Framework initially created by Kasper Skaarhoj and licensed under GNU/GPL.

TYPO3 is copyright 1998-2009 of Kasper Skaarhoj. Extensions are copyright of their respective owners.

Information and contribution at http://typo3.com/ and http://typo3.org/

-->

6.1.5 Special paths

Besides the actual required files themselves, a lot of CMS systems use

fixed internal paths that give out information about the software in use.

Wordpress, for example, has a lot of paths that feature the "wp-" prefix.

112 CHAPTER 6. FINGERPRINTING

<script type=’text/javascript’

src=’http://[...].de/wp-includes/js/jquery/jquery.js?ver=1.3.2’>

</script>

As with the included Javascript files, please also pay attention to the

problems section (6.1.9) of this chapter for further comments on this.

There is also the possibility of actually checking certain application

specific paths that are available for some content management systems.

A good example would be the path "/sites/all" for the Drupal CMS.

Another possibility to detect a CMS would be to check for the default

admin interface URL. For example, Typo3 uses "/typo3" and Wordpress

based blogs use "/wp-admin". While these additional checks would

allow an even better accuracy in the detection process, they would also

require additional HTTP requests. Especially when you consider the

amount of available (and detectable) CMS systems, this would result in

a huge performance loss.

6.1.6 Images

Another thing to look out for are "powered by" images that are also

usually accompanied by matching "alt" tags in the "img" element. Some

versions of the Alfresco CMS, for example, feature a "Powered by Alfresco"

icon that looks like this in the HTML source code:

<img src="assets/images/icons/powered_by_alfresco.gif"

alt="Powered by Alfresco" width="88" height="32" />

6.1.7 HTTP headers

Some CMS are detectable by looking at the HTTP headers of the package

being returned by the web server. One of the more prominent examples

is Drupal which sets the "EXPIRES" header to "Sun, 19 Nov 1978 05:00:00

GMT". In this case, November 19th 1978 is the birthday of the original

creator and project lead for Drupal. Before actually adding this to the

6.1. CMS DETECTION 113

fingerprinting engine, it is always a good idea to check the source code

(if available) to be sure that it was not a load balancer or the web server

that added a certain HTTP header.

6.1.8 Cookies

Another interesting part of the HTTP headers are cookies. A lot of content

management systems use session-cookies to track user behaviour or

restrict access using role based access control systems. An example of

these cookies can be found in headers created by the WebGUI CMS:

Set-Cookie: wgSession=qmDE6izoIcokPhm-PjTNgA;

Another example would be the blogtronix plattform which also sets a

cookie:

Set-Cookie: BTX_CLN=CDD92FE[...]5F6E43E; path=/; HttpOnly

6.1.9 Problems

While the techniques that have been showed so far are able to detect a

large percentage of CMS systems, there are as always exceptions to those

rules. When it comes to the detection of included Javascript/CSS files,

"CSS/Javascript aggregation" can circumvent detection of specific files.

When aggregating Javascript or CSS files, a single file containing all of

the initially included files is generated and linked to. This will generally

improve site load time and might look like this in HTML:

<script type="text/javascript"

src="http://[...].org/files/js/js_35664871d2d4304ed9d4d78267fc9ed5.js">

</script>

The filename is usually just generated, and without inspection of the

file, it is hard to say which CMS (or other preprocessor) created the file.

Another problem arises when it comes to using CMS-specific paths in the

detection process. A good example of CMS paths are the "wp-" prefixed

114 CHAPTER 6. FINGERPRINTING

paths that Wordpress uses to store content. Most images posted by a user

will usually have "/wp-content/" in the path-name. The problem is that

"hotlinking", meaning the linking to images that are on another person’s

webspace is pretty common on the internet. By simply relying on paths,

a lot of false positives could arise. Selecting paths carefully might help

with this. In the case of Wordpress, the "wp-includes" path tends to be a

good candidate for detection, as most people will not hotlink another

person’s Javascript/CSS.

6.2 Web servers

When it comes to detecting web servers, there are a lot of sophisticated

methods to do so. Dustin Willioam Lee describes this in detail in his

Master’s Degree Thesis "HMAP: A Technique and Tool For Remote Identification

of HTTP Servers" [[16]] Since the fingerprinting of web servers is not the

main goal of the current project, I decided to simply rely on the "server"

field in the HTTP header. A typical HTTP response including the "Server"

field looks like this:

$ curl -I marc-seeger.de

HTTP/1.1 200 OK

Content-Type: text/html

Connection: keep-alive

Status: 200

X-Powered-By: Phusion Passenger (mod_rails/mod_rack) 2.2.15

Content-Length: 1398

Server: nginx/0.7.67 + Phusion Passenger 2.2.15 (mod_rails/mod_rack)

Using this response, we can deduct that the website in question is

running on the nginx webserver or is at least load-balanced by it. While

some sites try to keep their output to a minimum, the simple check for

the "Server" header is enough to detect a large majority of web servers.

6.3. DRUPAL SPECIFIC DATA 115

6.3 Drupal specific data

Since Drupal is of specific interest to this project, the detection of modules

and version numbers is being processed in an additional step, since the

combination of HTML + HTTP headers is usually not enough to detect

all of it.

6.3.1 Modules

Drupal is a modular CMS and heavily relies on modules, to extend its

functionality. There are thousands of modules and being able to detect

the ones running on a specific site could be helpful when searching for

specific combinations (e.g. sites using an online shop module such as

’Ubercart’).

The initial idea for gathering modules is a simple check of the HTML

code for included files that are in a directory called "modules". In this

case, for example, the website uses modules such as "poll" (to create

online polls) and "lightbox2" (a javascript image viewer):

[...]

<style type="text/css" media="all">@import "/modules/poll/poll.css";</style>

[...]

<script type="text/javascript" src="/sites/all/modules/lightbox2/js/lightbox.js"></script>

[...]

While the detection problems (6.1.9) with CSS/JS aggregation also hold

true for this detection method, it still is able to analyze a large percentage

of sites without any additional HTTP overhead.

6.3.2 Versions

When it comes to the detection of the Drupal version (e.g. "6.17"),

however, the regular HTML source code does not provide enough information.

While Wordpress, for example, provides version information within the

116 CHAPTER 6. FINGERPRINTING

generator tag, Drupal does not have a generator tag or comment in the

generated HTML that would be able to tell us the version number.

There are some things that can be used to distinguish between different

versions of the CMS: The CHANGELOG.txt file is often present and

accessible in installations. it carries the exact version number of the

running software. This is a sample from the official drupal.org page:

// $Id: CHANGELOG.txt,v 1.253.2.39 2010/06/02 18:52:32 goba Exp $

Drupal 6.17, 2010-06-02

- Improved PostgreSQL compatibility

- Better PHP 5.3 and PHP 4 compatibility

While it is possible that people could upgrade to a newer version of

Drupal but not replace the changelog.txt file in the process, the percentage

is small enough to be neglected. If the changelog file is not accessible,

there is another way to do a version check. The "Taxonomy" module is

present in most Drupal installations. If it is accessible (/modules/taxonomy/taxonomy.info),

is also has the version information present:

[...]

; Information added by drupal.org packaging script on 2010-06-02

version = "6.17"

project = "drupal"

datestamp = "1275505216"

[...]

Using these two tests, we were able to detect version information on

approximately 75% of detected Drupal sites (sample size: 300.000 domains

running Drupal).

6.4. HOSTING PROVIDER 117

6.4 Hosting Provider

Another interesting task was to create the ability to detect the hosting

provider for a certain domain. Usually, it’s as easy as having the IP-Ranges

of the big providers available, and checking weather or not the server’s

IP Address is inside their network. For larger providers such as Amazon

EC2, the ranges can be found using a simple Google search. For other

providers, this information is not always that easy to find. It can usually

manually be extracted by just using the "whois" tool to query a server’s

IP:

$ whois 208.97.187.204

[...]

NetRange: 208.97.128.0 - 208.97.191.255

CIDR: 208.97.128.0/18

[...]

NetName: DREAMHOST-BLK5

In this example, the network 208.97.128.0/18 seems to belong to the

provider "Dreamhost". While it would be nice to be able to automatically

extract this information, the whois protocol sadly does not define a

formatting for this information. When querying for different IPs, it is

soon evident that parsing this data would be a huge project on its own.

The initial steps for such a project called "ruby-whois"1 already exist,

but the main focus is not on the network data and for the time being,

contributing code that would change that is not within the direct scope

of the crawler project. The pragmatic solution to this problem is to

simply get a list of the biggest hosting providers using Google, and spend

a few minutes finding out their network ranges.

1http://www.ruby-whois.org/

http://www.ruby-whois.org/

118 CHAPTER 6. FINGERPRINTING

6.5 Geolocation

Another interesting property of a website is the location of its web server.

This can help to determine the target audience for commonly used

top level domains like .net without going into CPU intensive analysis

of the website’s language. Since IP Ranges are being distributed in a

geographically consistent manner, databases which map an IP address

to a country are publicly available and a reliable source of information.

One example would be the "GeoLite" data by MaxMind. Their "open

data license" is developer friendly and the only thing they request is this:

All advertising materials and documentation mentioning features

or use of this database must display the following acknowledgment:

"This product includes GeoLite data created by MaxMind,

available from http://maxmind.com/

Existing Ruby-bindings to this database exist2 and work as expected.

6.6 Industry

One of the hardest requirements was the categorization of domains into

different industries. An interesting approach would be the implementation

of machine learning techniques to classify the data. There are several

algorithms that allow classification of data. A neural network or a support

vector machine would allow automatic classification, but this would

probably be a project on its own and does not seem feasible.

An easy alternative to this is the usage of a web-service such as jigsaw.com3.

Before using this data, it would be wise to study their API’s terms of

service4 and be sure to comply in terms of what can be saved and

which parts of the data are actually restricted. After enough domain +

2http://geoip.rubyforge.org/
3http://developer.jigsaw.com/
4http://developer.jigsaw.com/Developer_Terms_of_Use

http://geoip.rubyforge.org/
http://developer.jigsaw.com/
http://developer.jigsaw.com/Developer_Terms_of_Use

6.6. INDUSTRY 119

industry combinations have been collected, using the already mentioned

supervised learning algorithms might be an interesting follow up project.

Chapter 7

Conclusion and Outlook

The implemented architecture has been recorded processing up to 100

domains per second on a single server. At the end of the project the

system gathered information about approximately 100 million domains.

The collected data can be searched instantly and the automated generation

of statistics is visualized in the internal web interface.

For the future, there are two areas of interest that could enhance the

current design. The first one is the fast and steady pace of new developments

in the "nosql" space. Being able to switch the back-end to something

like Riak (with its announced search integration1) or newer versions

of MongoDB (that might be using more finely grained locks) would

be worth a future evaluation. The addition of one of these solutions

as a native data-source to Solr would also help to improve the current

architecture. The second area of interest would be the complete transformation

of the last remaining synchronous parts of the system into an asynchronous

and callback-driven workflow.

The project was a great exercise in applying my theoretical knowledge

about scalability to a real-life scenario with large amounts of data, and I

hope that this thesis allows others to learn from my results.

1http://www.basho.com/riaksearch.html

121

http://www.basho.com/riaksearch.html

Bibliography

[1] E. F. Codd
A relational model of data for large
shared data banks.
Communications of the ACM archive
Volume 13 , Issue 6 (June 1970)
Pages: 377 - 387
Year of Publication: 1970
ISSN:0001-0782

[2] A. Broder, R. Kumar, F. Maghoul, P.
Raghavan, S. Rajagopalan, R. Stata, A.
Tomkins, and J. Wiener.
Computer Networks: The
International Journal of Computer
and Telecommunications Networking
archive
Volume 33 , Issue 1-6 (June 2000)
Pages: 309 - 320
Year of Publication: 2000
ISSN:1389-1286

[3] Giuseppe DeCandia, Deniz Hastorun,
Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex
Pilchin, Swami Sivasubramanian,
Peter Vosshall and Werner Vogels
Dynamo: Amazon’s Highly Available
Key-Value Store
In the Proceedings of the 21st ACM
Symposium on Operating Systems
Principles, Stevenson, WA, October
2007.

[4] Ola Ågren, Department of Computing
Science, Umeå University, SWEDEN
Assessment of WWW-Based Ranking
Systems for Smaller Web Sites,

2006
http://www.dcc.ufla.br/infocomp/
artigos/v5.2/art07.pdf

[5] Link-Based Similarity Measures for
the Classification of Web Documents
Journal of the American Society for
Information Science and Technology
Volume 57 , Issue 2
Pages: 208 - 221
Year of Publication: 2006
ISSN:1532-2882

[6] Column-stores vs. row-stores: how
different are they really?
International Conference on
Management of Data archive
Proceedings of the 2008 ACM
SIGMOD international conference on
Management of data
Vancouver, Canada
SESSION: Research Session 20: Tuning
and Probing table of contents
Pages: 967-980
Year of Publication: 2008
ISBN:978-1-60558-102-6

[7] Request for Comments: 2616
Network Working Group
Hypertext Transfer Protocol –
HTTP/1.1
June 1999
http://www.ietf.org/rfc/rfc2616.
txt

[8] Request for Comments: 1034
Network Working Group
DOMAIN NAMES - CONCEPTS AND

123

http://www.dcc.ufla.br/infocomp/artigos/v5.2/art07.pdf
http://www.dcc.ufla.br/infocomp/artigos/v5.2/art07.pdf
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

124 BIBLIOGRAPHY

FACILITIES
November 1987
http://tools.ietf.org/html/
rfc1034

[9] Event-Driven I/O - A hands-on
introduction
Marc Seeger
HdM Stuttgart
July 13, 2010

[10] Thousands of Threads and Blocking
I/O
The old way to write Java Servers is
New again (and way better)
Paul Tyma
Presented at the SD West 2008
conference
http://paultyma.
blogspot.com/2008/03/
writing-java-multithreaded-servers.
html

[11] No Callbacks, No Threads: Async
webservers in Ruby 1.9
Ilya Grigorik
Railsconf 2010: http://www.oscon.
com/oscon2010/public/schedule/
detail/13709
OSCON 2010: http://en.oreilly.
com/rails2010/public/schedule/
detail/14096
Video: http://www.viddler.com/
explore/GreggPollack/videos/40/

[12] BLINDELEPHANT: WEB
APPLICATION FINGERPRINTING
WITH STATIC FILES
Patrick S. Thomas
BlackHat USA - July 28, 2010

[13] Request for Comments: 1866
Network Working Group, T.
Berners-Lee & D. Connolly
1995
http://www.ietf.org/rfc/rfc1866.
txt

[14] Request for Comments: 2068
Hypertext Transfer Protocol –
HTTP/1.1
Fielding, et. al.
1997
http://www.ietf.org/rfc/rfc2068.
txt

[15] Bitcask - A Log-Structured Hash
Table for Fast Key/Value Data
Justin Sheehy and David Smith
2010
http://downloads.basho.com/
papers/bitcask-intro.pdf

[16] HMAP: A Technique and Tool For
Remote Identification of HTTP
Servers
DUSTIN WILLIAM LEE B.S. (Gonzaga
University)
1990
http://seclab.cs.ucdavis.edu/
papers/hmap-thesis.pdf

[17] A Practical Introduction to Data
Structures and Algorithm Analysis
Clifford A. Shaffer. Prentice-Hall
1997
http://people.cs.vt.edu/
~shaffer/Book/

[18] Bitmap Index Design and Evaluation
Chee-Yong Chan und Yannis Ioannidis
Proceedings of the 1998 ACM
SIGMOD Conference.
http://www.comp.nus.edu.sg/
~chancy/sigmod98.pdf

[19] An Adequate Design for Large Data
Warehouse Systems: Bitmap index
versus B-tree index
Morteza Zaker, Somnuk
Phon-Amnuaisuk, Su-Cheng Haw
International Journal of Computers
and Communications, Issue
2, Volume 2, 2008 1 http:
//www.universitypress.org.uk/
journals/cc/cc-21.pdf

[20] Trie Memory,
Edward Fredkin

http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1034
http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html
http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html
http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html
http://paultyma.blogspot.com/2008/03/writing-java-multithreaded-servers.html
http://www.oscon.com/oscon2010/public/schedule/detail/13709
http://www.oscon.com/oscon2010/public/schedule/detail/13709
http://www.oscon.com/oscon2010/public/schedule/detail/13709
http://en.oreilly.com/rails2010/public/schedule/detail/14096
http://en.oreilly.com/rails2010/public/schedule/detail/14096
http://en.oreilly.com/rails2010/public/schedule/detail/14096
http://www.viddler.com/explore/GreggPollack/videos/40/
http://www.viddler.com/explore/GreggPollack/videos/40/
http://www.ietf.org/rfc/rfc1866.txt
http://www.ietf.org/rfc/rfc1866.txt
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc2068.txt
http://downloads.basho.com/papers/bitcask-intro.pdf
http://downloads.basho.com/papers/bitcask-intro.pdf
http://seclab.cs.ucdavis.edu/papers/hmap-thesis.pdf
http://seclab.cs.ucdavis.edu/papers/hmap-thesis.pdf
http://people.cs.vt.edu/~shaffer/Book/
http://people.cs.vt.edu/~shaffer/Book/
http://www.comp.nus.edu.sg/~chancy/sigmod98.pdf
http://www.comp.nus.edu.sg/~chancy/sigmod98.pdf
http://www.universitypress.org.uk/journals/cc/cc-21.pdf
http://www.universitypress.org.uk/journals/cc/cc-21.pdf
http://www.universitypress.org.uk/journals/cc/cc-21.pdf

BIBLIOGRAPHY 125

CACM, 3(9):490-499
September 1960
http://portal.acm.org/citation.
cfm?id=367400

[21] High Performance MySQL, Second
Edition - Optimization, Backups,
Replication, and More
ByBaron Schwartz, Peter Zaitsev,
Vadim Tkachenko, Jeremy D. Zawodny,
et al.
Publisher:O’Reilly Media
June 2008
ISBN: 978-0-596-10171-8

[22] R-trees: a dynamic index structure
for spatial searching
International Conference on
Management of Data archive
Proceedings of the 1984 ACM
SIGMOD international conference on
Management of data table of contents
Boston, Massachusetts
SESSION: Physical database design
table of contents
Pages: 47 - 57
Year of Publication: 1984
ISBN:0-89791-128-8

[23] Dynamo: Amazon’s Highly Available
Key-value Store
Giuseppe DeCandia, Deniz Hastorun,
Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex
Pilchin, Swami Sivasubramanian,
Peter Vosshall and Werner Vogels
In the Proceedings of the 21st ACM
Symposium on Operating Systems
Principles
Stevenson, WA, October 2007.
http://www.
allthingsdistributed.com/files/
amazon-dynamo-sosp2007.pdf

[24] Efficient Crawling Through URL
Ordering
Cho, J. and Garcia-Molina, H. and
Page, L.
Seventh International World-Wide

Web Conference (WWW 1998)
1998
http://ilpubs.stanford.edu:
8090/347/1/1998-51.pdf

[25] Marc Najork and Janet L. Wiener
Breadth-first crawling yields
high-quality pages.
In Proceedings of the Tenth
Conference on World Wide Web,
pages 114–118, Hong Kong, May 2001.
http://www10.org/cdrom/papers/
pdf/p208.pdf

[26] R., Castillo, C., Marin, M. and
Rodriguez, A.
Crawling a Country: Better Strategies
than Breadth-First for Web Page
Ordering. In Proceedings of the
Industrial and Practical Experience
track of the 14th conference on World
Wide Web, pages 864–872
2005
http://www.dcc.uchile.cl/
~ccastill/papers/baeza05_
crawling_country_better_breadth_
first_web_page_ordering.pdf

[27] Shervin Daneshpajouh, Mojtaba
Mohammadi Nasiri, Mohammad
Ghodsi
A Fast Community Based Algorihm for
Generating Crawler Seeds Set
In proceeding of 4th International
Conference on Web Information
Systems and Technologies
(WEBIST-2008)
2008
http://ce.sharif.edu/
~daneshpajouh/publications/A%
20Fast%20Community%20Based%
20Algorithm%20for%20Generating%
20Crawler%20Seeds%20Set.pdf

http://portal.acm.org/citation.cfm?id=367400
http://portal.acm.org/citation.cfm?id=367400
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://ilpubs.stanford.edu:8090/347/1/1998-51.pdf
http://ilpubs.stanford.edu:8090/347/1/1998-51.pdf
http://www10.org/cdrom/papers/pdf/p208.pdf
http://www10.org/cdrom/papers/pdf/p208.pdf
http://www.dcc.uchile.cl/~ccastill/papers/baeza05_crawling_country_better_breadth_first_web_page_ordering.pdf
http://www.dcc.uchile.cl/~ccastill/papers/baeza05_crawling_country_better_breadth_first_web_page_ordering.pdf
http://www.dcc.uchile.cl/~ccastill/papers/baeza05_crawling_country_better_breadth_first_web_page_ordering.pdf
http://www.dcc.uchile.cl/~ccastill/papers/baeza05_crawling_country_better_breadth_first_web_page_ordering.pdf
http://ce.sharif.edu/~daneshpajouh/publications/A%20Fast%20Community%20Based%20Algorithm%20for%20Generating%20Crawler%20Seeds%20Set.pdf
http://ce.sharif.edu/~daneshpajouh/publications/A%20Fast%20Community%20Based%20Algorithm%20for%20Generating%20Crawler%20Seeds%20Set.pdf
http://ce.sharif.edu/~daneshpajouh/publications/A%20Fast%20Community%20Based%20Algorithm%20for%20Generating%20Crawler%20Seeds%20Set.pdf
http://ce.sharif.edu/~daneshpajouh/publications/A%20Fast%20Community%20Based%20Algorithm%20for%20Generating%20Crawler%20Seeds%20Set.pdf
http://ce.sharif.edu/~daneshpajouh/publications/A%20Fast%20Community%20Based%20Algorithm%20for%20Generating%20Crawler%20Seeds%20Set.pdf

	Contents
	List of Figures
	Introduction to the Project
	Acquia
	Requirements
	Existing codebase

	Architectural decisions and limitations
	Estimated back-end load
	Ruby
	The choice for Ruby
	Language Features
	C Extensions
	VMs

	I/O model (async vs threading)
	Amazon Elastic Compute Cloud
	Instance Types
	Elastic Block Store
	Performance

	Back-end and Search
	Datastores
	Categorization
	Data store scalability

	Datastructures
	Hash-based
	R-tree-based
	Merkle-tree-based
	Trie-based
	Bitmap-based

	Generic Problems
	HTTP persistent connections
	Locking
	Append-only storage and compacting

	Search possibilities
	Classification
	Indexation
	Map/Reduce
	Search and the dynamo model

	Evaluation
	MongoDB
	CouchDB
	MySQL and PostgreSQL
	Tokyo Cabinet
	Riak
	Cassandra
	Miscellaneous

	External search
	Sphinx
	Solr
	Elasticsearch

	Work Queues
	Redis
	Conclusion for the project
	Beanstalkd
	Conclusion for the project

	Crawler
	System architecture
	Components
	Data schema

	Problems
	HTTP redirects and standards
	wildcard subdomains and spam
	www cname records
	top level domain detection
	Balancing parallelism
	File descriptors

	Link collection
	RegExp vs HTML Parsing
	Adaptive crawl depth
	Twitter
	Seed sites
	DMOZ and Wikipedia
	Zone files
	Recrawling

	Distribution

	Profiling-Methods
	lsof
	dtrace and strace
	curl
	mtop
	JRuby based profiling

	Fingerprinting
	CMS detection
	The Generator meta tag
	Included files
	Javascript variables
	Comments
	Special paths
	Images
	HTTP headers
	Cookies
	Problems

	Web servers
	Drupal specific data
	Modules
	Versions

	Hosting Provider
	Geolocation
	Industry

	Conclusion and Outlook
	Bibliography

